K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

Hình pn tự vẽ.

a) Ta có G đối xứng với E qua D \(\Rightarrow ED=GD\)

Mà D là trung điểm của cạnh AC\(\Rightarrow AD=CD\)

\(\Rightarrow\) AECG là hình bình hành(2 đường chéo cắt nhau tại trung điểm mỗi đường)

\(\widehat{E}=90^0\)

\(\Rightarrow AECG\) là hcn (1)

b) Tương tự (1) cm được AEBH là hcn (2)

\(\Rightarrow HA//BE\)

Từ \(\left(1\right)\Rightarrow AG//CE\)

Theo tiên đề ơ clit \(\Rightarrow H,A,G\) thẳng hàng

c) Từ \(\left(1\right)\Rightarrow\widehat{C}=\widehat{G}=90^0\)(3)

Từ \(\left(2\right)\Rightarrow\widehat{H}=\widehat{B}=90^0\)(4)

Từ \(\left(3\right),\left(4\right)\) =>BCGH là hcn (tứ giác có 4 góc vuông là hình chữ nhật)

23 tháng 10 2017

a. Ta có :Vì G đối xứng E qua D nên D là trung điểm EG

Xét tứ giác AGCE có : AC , EG là hai đường chéo

Mà AC cắt EG tại trung điểm mỗi đường

Do đó AGCE là hình bình hành .

Lại có : AE \(\perp\) BC => Góc AEC = 90 độ

Vậy AGCE là hình chữ nhật

b. Ta có : Vì H đối xứng với E qua F nên F là trung điểm HE

Xét tứ giác HAEB có : 2 đường chéo AB , HE

Mà AB cắt HE tại trung điểm mỗi đường

Do đó HAEB là hình bình hành

Lại có : góc AEB = 90 độ

=> HAEB là hình chữ nhật

=> Góc HAE = 90 độ

Mà ta có : AGCE là hình chữ nhật

=> Góc GAE = 90 độ

=> Góc HAE + Góc GAE = 90 độ

Hay góc HAE và góc GAE kề bù

=> H , A , G thẳng hàng

23 tháng 10 2017

Giúp mình nhớ anh em

3 tháng 11 2017

tự kẻ hình nhé ,ko thì có j ib mk kẻ hộ cx dk ak

b )xét tứ giác hbea có 2 đường chéo he và ba giao tại f 

mà f là trung điểm của he ,f là trung điểm của ba 

=>  hbea là hbh => hb //ae ;hb = ae                              (1)

 xét tứ giác aecg có ge và ca là 2 đường chéo giao tại d 

mà d là tủng điểm của ge ;d là trung diểm của ca 

=> aecg là hbh => cg = ae ;cg // ae                       (2) 

từ (1) và (2) => hb//cg ;hb=cg => hbcg lag hbh 

có ae //cg mà ae vuông góc với bc =. bc vuông góc với cg => bcg = 90 độ mà hbcg lag hbh => hbcg là hcn 

a: Xét tứ giác AHBE có

M là trung điểm của AB

M là trung điểm của HE

Do đó: AHBE là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm của AF

H là trung điểm của BC

Do đó:ABFC là hình bình hành

mà AB=AC

nên ABFC là hình thoi

9 tháng 1 2022

a) Ta có: E đối xứng với H qua M (gt)

=> M là trung điểm của HE

Xét tứ giác AHBE có:

MA = MB (M là trung điểm của AB)

ME = MH (M là trung điểm của HE)

\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)

=> AHBE là hcn (đpcm)

b, Vì ABC là tam giác cân

=> AB = AC (1)

Vì F đối xứng với A qua H

=> FB = AB ; FC = AC (2)

Từ (1) và (2) => AB = AC = FC = FB

Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)

=> ABFC là hình thoi (đpcm) 

 

 

14 tháng 12 2021

a) Tứ giác AHCE có 

     AD = DC

     HD = DE

=> AHCE là hình bình hành

     H =90°

=> AHCE là hình chữ nhật

b) Vì ∆ABC cân tại A

    =>AB = AC

Mà AC = HE (AHCE là hình chữ nhật)

=> AB = HE

Mình mới làm tới câu b thôi

 

 

24 tháng 12 2021

a: Xét tứ giác ADEF có

\(\widehat{ADE}=\widehat{AFE}=\widehat{FAD}=90^0\)

Do đó: ADEF là hình chữ nhật

24 tháng 12 2021

um có hình ko ạ

21 tháng 12 2021

Bài 3: 

a: Xét tứ giác AHBF có

E là trung điểm của AB

E là trung điểm của HF

Do đó: AHBF là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBF là hình chữ nhật

Câu b đề sai rồi bạn

G đối xứng với E qua D đúng không bạn?

3 tháng 1 2021

à đúng rồi bạn G đối xứng với E qua D mà do mình vội nên ghi sai

 

17 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tính chất đường trung trực)

Nên ∆ ADE cân tại A

Suy ra: AB là đường phân giác của ∠ (DAE) ⇒ ∠ A 1 ∠ A 2

* Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF (tính chất đường trung trực)

Nên  ∆ ADF cân tại A

Suy ra: AC là phân giác của  ∠ (DAF)

⇒  ∠ A 3 =  ∠ A 4

∠ (EAF) =  ∠ EAD) +  ∠ (DAF) = ∠ A 1 ∠ A 2 ∠ A 3 ∠ A 4 = 2( ∠ A 1 ∠ A 3 ) = 2 . 90 0 = 180 0

⇒ E, A, F thẳng hàng có AE = AF = AD

 

Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.