cho tam giac ABC ve tia phan giac AD tai A biet ADB=80 B=3/2C tinh cac goc cua tam giac ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC:
A+B+C=180(độ)
=>180(độ)-80(độ)-20(độ)=80(độ)
Vì AD là tia phân giác của góc A=> Góc BAD=80/2=40(độ)
Xét tam giác ABD có:
B+ADB+BAD=180(độ)
=>ADB=180(độ)-80(độ)-40(độ)=60(độ)
Hai góc ABD và ADC kề bù:
=>ADC+ADB=180(độ)
=>ADC=180(độ)-60(độ)
Tam giác ABC:
A+B+C=180(độ)
=>180(độ)-80(độ)-20(độ)=80(độ)
Vì AD là tia phân giác của góc A=> Góc BAD=80/2=40(độ)
Xét tam giác ABD có:
B+ADB+BAD=180(độ)
=>ADB=180(độ)-80(độ)-40(độ)=60(độ)
Hai góc ABD và ADC kề bù:
=>ADC+ADB=180(độ)
=>ADC=180(độ)-60(độ)
A B C I
Trong tam giác BIC có: góc BIC = 180o - (IBC + ICB)
Mà góc IBC = ABC /2 ; góc ICB = ACB / 2 nên góc BIC = 180o - \(\frac{ABC+ACB}{2}\) = 180o - \(\frac{180^o-BAC}{2}\)
a) Góc BAC = 80o thì góc BIC = 180o - \(\frac{180^o-80^o}{2}\) = 130o
b) Góc BAC = m thì góc BIC = 180o - \(\frac{180^o-m}{2}=90^o+\frac{m}{2}\)
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
\(\widehat{ADC}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{B}+\widehat{BAD}=\widehat{ADC}+\widehat{C}+\widehat{CAD}\)
mà \(\widehat{BAD}=\widehat{CAD}\)
nên \(\widehat{ADB}+\widehat{B}=\widehat{ADC}+\widehat{C}\)
=>\(\widehat{B}-\widehat{C}=100^0-80^0=20^0\)
=>\(\dfrac{3}{2}\widehat{C}-\widehat{C}=20^0\)
=>\(\widehat{C}=40^0\)
\(\widehat{B}=\dfrac{3}{2}\cdot40^0=60^0\)
\(\widehat{BAC}=180^0-40^0-60^0=80^0\)