tìm GTNN
3x^2 + 6x + 2
tìm GTLN
a, -x^2 + 6x + 12
b, -12x^2 - 3x +1
c, ( 3x^2 - 15x + 20 ) : 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
A = x2 - 8x + 1 = (x2 - 8x + 16) - 15 = (x - 4)2 - 15
Ta có: (x - 4)2 \(\ge\)0 \(\forall\)x
=> (x - 4)2 - 15 \(\ge\)-15 \(\forall\) x
Dấu "=" xảy ra khi: x - 4 = 0 <=> x = 4
vậy Min của A = -15 tại x = 4
B = 9x2 - 12x - 2 = 9(x2 - 4/3x + 4/9) - 6 = 9(x - 2/3)2 - 6
Ta có: (x - 2/3)2 \(\ge\)0 \(\forall\)x ---> 9(x - 2/3)2 \(\ge\)0 \(\forall\)x
=> 9(x - 2/3)2 - 6 \(\ge\)-6 \(\forall\)x
Dấu "=" xảy ra khi: x - 2/3 = 0 <=> x = 2/3
vậy Min của B = -6 tại x = 2/3
a, 15x3 - 15x = 0
15x(x2-1)=0
15x=0 hoặc x2-1=0 (tự tính nhoa)
b,3x2-6x+3=0
3(x2-2x+1)=0
x2 -2x+1=0:3=3
x2-2x=3-1=2
x(x-2)=0
x=0 hoặc x-2=0 (tự tính nhoa)
Bài làm
a) 15x3-15x=0
<=> 15x( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = { 0; + 1 }
b) 3x2 - 6x + 3 = 0
<=> 3( x2 - 2x + 1 ) = 0
<=> x2 - 2x + 1 = 0
<=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy x = 1
c) 5(x - 1) - 3x(1 - x) = 0
<=> 5(x - 1) + 3x(x - 1) = 0
<=> (5 + 3x)(x - 1) = 0
<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)
Vậy x = { -5/3; 1 }
e) -7(x + 2) = 2x(x + 2)
<=> -7(x + 2 ) - 2x( x + 2 ) = 0
<=> (x + 2)(-7 - 2x) = 0
<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)
Vậy x = { -2; x = -7/2 }
f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)
<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0
<=> (3x + 5)(2x - 3 - x + 1) = 0
<=> (3x + 5)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)
Vậy x = { -5/3; 2 }
a) 4x(3x-7)-6(2x2-5x+1)=12
=>4x.3x-4x.7-6.2x2-6.(-5x)-6.1=12
=>12x2-28x-12x2+30x-6=12
=>2x-6 =12
=>2x =12+6
=>2x =18
=>x =18:2
=>x =6
b)(5x+3)(4x-1)+(10x-7)(-2x+3)=27
=>5x.4x-5x.1+3.4x+3.(-1)+10x.(-2x)+10x.3-7.-(2x)-7.3=27
=>20x2-5x+12x-3-20x2+30x+14x-21=27
=>39x-36 =27
=>39x =27+36
=>39x =63
=>x =63:39
=>x =21/13
c) (8x-5)(3x+2)-(12x+7)(2x-1)=17
=>8x.3x+8x.2-5.3x-5.2-12x.2x-12x.(-1)+7.2x+7.(-1)=17
=>24x2+16x-15x-10-24x2+12x+14x-7=17
=>27x-17 =17
=>27x =17+17
=>27x =34
=>x =34:27
=>x =34/27
d) (5x+9)(6x-1)-(2x-3)(15x+1)=-190
=>30x2-5x+63x-9 - 30x2-2x-45x-3=-190
=>11x-12 =-190
=>11x =-190+12
=>11x =-178
=>x = -178:11
=>x =-178/11
\(a,A=x^2+15x-25\)
\(=x^2+2.x.\frac{15}{2}+\frac{125}{4}-\frac{125}{4}-25\)
\(=\left(x+\frac{15}{2}\right)^2-\frac{225}{4}\)
\(A_{min}=-\frac{225}{4}\Leftrightarrow\left(x+\frac{15}{2}\right)^2=0\)
\(\Leftrightarrow x=-\frac{15}{2}\)
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
bài2
A= -x2 + 6x + 12
=-(x2-6x-12)
=-(x2-6x+9+3)
= -(x-3)2+3
do -(x-3)2\(\le0\forall x\)
=> -(x-3)2+3\(\le3\)
GTLN A =3 khi và chỉ khi
x-3=0
=> x=3
vậy GTLN A =3khi x=3