(4m^2 -2).X= 1+2m+X
Để pt có vô số nghiệm khi m bằng bnhieu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)
--> Phương trình luôn có 2 nghiệm phân biệt
--> Không có giá trị m để pt vô nghiệm
a, Thay m = 1 vào pt trên ta được
\(x^2+x-1=0\)
\(\Delta=1-4\left(-1\right)=1+5>0\)
Vậy pt luôn có 2 nghiệm pb
\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)
b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )
Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)
hay ko có gtri nào của m để pt vô nghiệm
a.
Khi \(m=2\) pt trở thành:
\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
b.
Để pt có nghiệm \(x=-1\)
\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)
\(\Leftrightarrow-m^2+m+m^2-1=0\)
\(\Leftrightarrow m-1=0\)
\(\Leftrightarrow m=1\)
c.
Pt tương đương:
\(\left(m^2-m\right)x=-\left(m^2-1\right)\)
\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)
Pt vô nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)
\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)
Pt có vô số nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Lời giải:
a. Khi $m=2$ thì pt trở thành:
$2x+3=0\Leftrightarrow x=-\frac{3}{2}$
b. Để pt có nghiệm $x=-1$ thì:
$(m^2-m).(-1)+m^2-1=0$
$\Leftrightarrow m-1=0\Leftrightarrow m=1$
c.
PT $\Leftrightarrow (m^2-m)x=1-m^2$
Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)
Để PT có nghiệm thì: $m\neq 0$
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Để phương trình x^2 - 2m^2x - 4m - 1 = 0 có nghiệm nguyên, ta cần tìm giá trị của m sao cho delta (đại diện cho biểu thức bên trong căn bậc hai trong công thức nghiệm) là một số chính phương.
Công thức tính delta là: delta = b^2 - 4ac
Áp dụng vào phương trình đã cho, ta có:
a = 1, b = -2m^2, c = -4m - 1
delta = (-2m^2)^2 - 4(1)(-4m - 1)
= 4m^4 + 16m + 4
Để delta là một số chính phương, ta cần tìm các giá trị nguyên dương của m để đạt được điều kiện này. Ta có thể thử từng giá trị nguyên dương của m và kiểm tra xem delta có là số chính phương hay không.
Ví dụ, với m = 1, ta có:
delta = 4(1)^4 + 16(1) + 4
= 4 + 16 + 4
= 24
24 không phải là số chính phương.
Tiếp tục thử một số giá trị nguyên dương khác cho m, ta có:
Với m = 2, delta = 108 (không phải số chính phương)Với m = 3, delta = 400 (không phải số chính phương)Với m = 4, delta = 1004 (không phải số chính phương)Với m = 5, delta = 2016 (không phải số chính phương)Với m = 6, delta = 3484 (không phải số chính phương)Qua việc thử nghiệm, ta không tìm được giá trị nguyên dương của m để delta là một số chính phương. Do đó, không có giá trị của m thỏa mãn yêu cầu đề bài.
15:37Để pt (2) vô nghiệm khi
\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)
b) phương trình như trên
\(\Delta'=\left(m+1\right)^2-2m^2-2m-1=m^2+2m+1-2m-1=-m^2< 0\left(\forall m\right)\)
Zậy phương trình trên zô nghiệm zới mọi m
\(=>m\inℝ\)
Phương trình : x2 + 2. ( m + 1 ) .x + 2.m2 + 2.m + 1 = 0 ( a = 1 ; b=2 ( m + 1 ) ; c = 2.m2 + 2.m + 1 )
\(\Delta'=\left(m+1\right)^2-2m^2-2.m-1=m^2+2.m+1-2.m^2-2.m-1=\)\(-m^2< 0\forall m\)
Vậy phương trình trên vô nghiệm với mọi m => m thuộc R
\(\left(4m^2-2\right)x=1+2m+x\)
\(\Leftrightarrow\left(4m^2-2-1\right)x=2m+1\)
\(\Leftrightarrow\left(4m^2-3\right)x=2m+1\)
Để phương trình có vô số nghiệm thì\(\left\{{}\begin{matrix}4m^2-3=0\\2m+1=0\end{matrix}\right.\Leftrightarrow m\in\varnothing\)