K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

2 tháng 8 2018

Tham khảo bài giải nhé !

CHúc bạn học tốt

NV
3 tháng 4 2021

\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Chứng minh gì bạn?

28 tháng 4 2017

y=1

x=2

28 tháng 4 2017

bạn giải thích rõ ra đi

27 tháng 4 2016

Chào ng đẹp

http://olm.vn/hoi-dap/question/119593.html

27 tháng 4 2016

mãi éo ra

10 tháng 5 2018

Ta có \(A=\left(x+\frac{2}{y}\right)\left(\frac{y}{x}+2\right)\)

\(=y+\frac{2}{x}+2x+\frac{4}{y}\ge2\sqrt{y.\frac{4}{y}}+2\sqrt{\frac{2}{x}.2x}=8\)

Vậy Cái Đề

31 tháng 3 2020

- Áp dụng BĐT cauchuy ta có :

\(\left\{{}\begin{matrix}x+\frac{1}{y}\ge2\sqrt{\frac{x}{y}}\\y+\frac{1}{z}\ge2\sqrt{\frac{y}{z}}\\z+\frac{1}{x}\ge2\sqrt{\frac{z}{x}}\end{matrix}\right.\)

- Nhân 3 vế trên lại ta được :

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}\)

\(2\sqrt{\frac{x}{y}}.2\sqrt{\frac{y}{z}}.2\sqrt{\frac{z}{x}}=8\sqrt{\frac{x.y.z}{y.z.x}}=8.1=8\)

=> \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)\left(z+\frac{1}{x}\right)\ge8\) ( đpcm )