K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

Nên \(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcz}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcz}{c^2}=\dfrac{abz-acy+bcx-abz+acy-bcz}{a^2+b^2+c^2}=\dfrac{0}{a^2+b^2+c^2}=0\)

Nên \(\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y}{b}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{x}{a}=\dfrac{y}{b}\end{matrix}\right.\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{c}{z}\)

12 tháng 8 2017

Ta có: \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-abx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-abx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-abx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\dfrac{z}{c}=\dfrac{y}{b};\dfrac{x}{a}=\dfrac{z}{c};\dfrac{y}{b}=\dfrac{x}{a}\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow x:y:z=a:b:c\)

Vậy x:y:z = a:b:c

12 tháng 8 2017

https://olm.vn/hoi-dap/question/116940.html

7 tháng 1 2018

Ta có :

\(\frac{bz-cy}{a}=\frac{cy-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxz}{cz}=\frac{0}{ax+by+cz}=0\)

Suy ra : bz = cy \(\Rightarrow\frac{z}{c}=\frac{y}{b}\)( 1 )

cx = az \(\Rightarrow\frac{x}{a}=\frac{z}{c}\)  ( 2 )

ay = bx \(\Rightarrow\frac{y}{b}=\frac{x}{a}\)  ( 3 )

Từ ( 1 ) , ( 2 ) và ( 3 ) suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)hay x : y : z = a : b : c

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:

Áp dụng TCDTSBN:

$\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}$

$=\frac{bza-cya}{a^2}=\frac{cxb-azb}{b^2}=\frac{ayc-bxc}{c^2}$

$=\frac{bza-cya+cxb-azb+ayc-bxc}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0$

$\Rightarrow bz-cy=cx-az=ay-bx$

$\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}$

Hay $a:b:c=x:y:z$ (đpcm)

25 tháng 8 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(=\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(=\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

\(=\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\dfrac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-acy=bcx-abz=acy-bcx\)

\(\Rightarrow a\left(bz-cy\right)=b\left(cx-az\right)=c\left(ay-bx\right)\)

\(\Rightarrow bz-cy=cx-az=ay-bx\)

\(\Rightarrow\left\{{}\begin{matrix}bx=cy\\cx=az\\ay=bx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{c}=\dfrac{y}{b}\\\dfrac{x}{a}=\dfrac{z}{c}\\\dfrac{y}{b}=\dfrac{x}{a}\end{matrix}\right.\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)

Vậy \(x:y:z=a:b:c\)

10 tháng 11 2017

Bạn giỏi thật đó !!! hihi

5 tháng 2 2015

\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0 
+\frac{bz-cy}{a}=0bz=cy\frac{b}{y}= \frac{c}{z} 
+\frac{cx-az}{b}=0cx=az\frac{a}{x}= \frac{c}{z} 

Từ 
 và  ta có\frac{a}{x}= \frac{b}{y}= \frac{c}{z} (đpcm)

22 tháng 11 2018

thân em thì nhỏ tí ti

các bà các chị , các dì đều thương

em đi em lại 4 phương

dọc ngang lắm lối , lách luồn nhiều nơi

tấm thân hiến chọn cho đời

sang hèn chẳng chê chuộng ,giúp người chẳng quản công

(đó là cây gì)?

22 tháng 11 2018

Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)\(=>\frac{bzx-cyx}{ax}=\frac{ycx-ayz}{by}=\frac{zay-bxz}{cz}\)\(=\frac{bzx-cyx+cyz-ayz+ayz-bzx}{ax+by+cz}=\frac{0}{ax+by+cz}=0\)

\(=>\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\left(=\right)\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}\left(=\right)\hept{\begin{cases}\frac{b}{y}=\frac{c}{z}\\\frac{c}{z}=\frac{a}{x}\\\frac{a}{x}=\frac{b}{y}\end{cases}}}}\)

\(=>\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)hay a:b:c=x:y:z

học tốt

19 tháng 7 2015

Vì bz-cy/a=cx-az/b=ay-bx/c 
=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2 
theo tính chất của dãy tỉ số bằng nhau : 
=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+... 
= 0/a^2+b^2+c^2=0 
vì bz-cy/a=0=>bz=cy=>y/b=z/c (1) 
vì cx-az/b=0=>cx=az=>x/a=z/c (2) 
từ (1) và (2) => x/a=y/b=z/c

15 tháng 11 2016

trả lời sai đề