P=\(\hept{\frac{2\sqrt{x}}{\sqrt{x}+3}}\)+\(\frac{\sqrt{x}}{\sqrt{x}+3}\)-\(\frac{3x+3}{x-9}\)}\(\hept{\frac{2\sqrt{x}-2}{\sqrt{x}-3}}\)} Rút gọn bt P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2\sqrt{x}.\left(\sqrt{x}+3\right)+\sqrt{x}.\left(\sqrt{x}-3\right)+3-3x}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(\frac{3.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3}{\sqrt{x}+3}\)
Em mới học lớp 8 nhưng làm thử sai thì thôi nhé !!!
\(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}\)\(-\frac{3x+3}{x-9}\)
\(P=\frac{2\sqrt{x}.\left(\sqrt{x}-3\right)+\sqrt{x}.\left(\sqrt{x}+3\right)-3x-3}{\sqrt{x}^2-3^2}\)
\(P=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\sqrt{x}^2-3^2}\)
\(p=\frac{-3\sqrt{x}-3}{\sqrt{x}^2-3^2}=\frac{-3.\left(\sqrt{x}+1\right)}{x-9}\)
ĐK : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
\(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\cdot\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}\)
\(=\frac{2x-6\sqrt{x}+x-3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-3}\)
\(=\frac{-6\left(3\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}\)( hơi xấu nhỉ :V )