K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2015

Đề vậy thì không chứng minh được đâu

16 tháng 7 2015

 ta có:  2x/3 = 3y/4 = 4z/5 
=>2x/3 . 1/12 = 3y/4.1/12 = 4z/5.1/12 <=>x/18 = y/16 = z/15 

Áp dụng t/c của dãy tỉ số = nhau, ta có: 

 x/18 = y/16 = z/15 = (x+y+z)/(18+16+15) = 49/49 = 1 

Khi đó:  x = 18

 y = 16

 z = 15

16 tháng 7 2015

ta có:  2x/3 = 3y/4 = 4z/5 
=>2x/3 . 1/12 = 3y/4.1/12 = 4z/5.1/12 <=>x/18 = y/16 = z/15 

Áp dụng t/c của dãy tỉ số = nhau, ta có: 

 x/18 = y/16 = z/15 = (x+y+z)/(18+16+15) = 49/49 = 1 

Khi đó:  x = 18

 y = 16

 z = 15

2 tháng 4 2017

Bài này khó dữ chị ơi! Em chỉ mới học lớp 4! Sorry chị nha!

2 tháng 4 2017

em bó tay.com. vn

em mới lớp 5 thui chị ơi

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

13 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{t}=\frac{x+y+z}{y+z+t}\)

\(\frac{x^3+y^3+z^3}{y^3+z^3+t^3}\Leftrightarrow\left(\frac{x+y+z}{y+z+t}\right)^3\)

\(\Rightarrow\left(\frac{x+y+z}{y+z+t}\right)^3=\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}.\frac{x+y+z}{y+z+t}=\frac{x}{y}.\frac{y}{z}.\frac{z}{t}=\frac{x}{t}\) (đpcm)

13 tháng 10 2019

Đặt x/y = y/z = z/t = k

=> x/y . y/z . z/t = x/t k^3 (1)

Có x/y = y/z = z/t = k = x + y + z/y + z + t(t/c dãy tỉ số bằng nhau)

=> x^3/y^3 + y^3/z^3 + z^3/t^3 = x^3 + y^3 + z^3/y^3 + z^3 + t^3 = k^3 (2)

Từ (1) và (2) => x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t = k^3

Vậy x^3 + y^3 + z^3/y^3 + z^3 + t^3 = x/t 

Theo đề, ta có:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{1}{3}x=-2t\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{x}{-2}=\dfrac{t}{\dfrac{1}{3}}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{t}{-\dfrac{1}{3}}=\dfrac{x+y+z-2t}{2+3+4-2\cdot\dfrac{-1}{3}}=\dfrac{4}{\dfrac{29}{3}}=\dfrac{12}{29}\)

Do đó: x=24/29; y=36/29; z=48/29; t=-4/29

\(\dfrac{x}{2}+\dfrac{y}{3}-z+t=\dfrac{12}{29}+\dfrac{12}{29}-\dfrac{48}{29}+\dfrac{-4}{29}=-\dfrac{28}{29}\)