A= 1/4 + 1/4^2 + 1/4^3 +...+1/4^2013
CM: A < 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A< \(\frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2012+2013}\)
⇔ A< \(\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2012}-\frac{1}{2013}\)
⇔ A<\(\frac{1}{4}+\frac{1}{2}-\frac{1}{2013}\)
vì \(\frac{1}{4}+\frac{1}{2}-\frac{1}{2013}< \frac{3}{4}\)
nên A < \(\frac{3}{4}\)
g: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{19}{20}=\dfrac{1}{20}\)
h: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot..\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
f: \(A=1+\dfrac{1}{2^{2014}}\)
\(B=\dfrac{2^{2014}+1+1}{2^{2014}+1}=1+\dfrac{1}{2^{2014}+1}\)
mà \(2^{2014}< 2^{2014}+1\)
nên A>B
Baif nay dễ lắm cậu. Cậu chú ý xíu 1/4*5<1/4^2<1/3*4
Ở trường hơp nhỏ hơn cậu làm như sau : Đặt dãy đó là \(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2013^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2012\cdot2013}=\frac{1}{3}-\frac{1}{2013}< \frac{1}{3}\)
Làm tương tự như ở th lớn là bạn ra kq r
A = 1/4^2 + 1/5^2 + 1/6^2 + ... + 1/2013^2
1/4^2 < 1/3*4
1/5^2 < 1/4*5
...
1/2013^2 < 1/2012*2013
=> A < 1/3*4 + 1/4*5 + ... + 1/2012*2013
=> A < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2012 - 1/2013
=> A < 1/3 - 1/2013
=> A < 670/2013 < 1/3 (1)
1/4^2 > 1/4*5
1/5^2 > 1/5*6
...
1/2013^2 > 1/2013*2014
=> A > 1/4*5 + 1/5*6 + ... + 1/2013*2014
=> A > 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/2013 - 1/2014
=> A > 1/4 - 1/2014
=> A > 1005/4028 > 1/5 (2)
(1)(2) => 1/5 < A < 1/3
Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+.........+\dfrac{1}{4^{2013}}\)
\(\Leftrightarrow4A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+.........+\dfrac{1}{4^{2012}}\)
\(\Leftrightarrow4A-A=\left(1+\dfrac{1}{4}+......+\dfrac{1}{4^{2012}}\right)-\left(\dfrac{1}{4}+\dfrac{1}{4^2}+........+\dfrac{1}{4^{2013}}\right)\)
\(\Leftrightarrow3A=1-\dfrac{1}{4^{2013}}\)
\(\Leftrightarrow A=\dfrac{1-\dfrac{1}{4^{2013}}}{3}\)
Cho mik hỏi ở trên 4A sao dưới lại ghi 3A