K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

A B C H x

Kẻ đường cao AH cũng là đường phân giác: ta có \(\widehat{ABC}=\frac{180-\widehat{BAC}}{2}=90-\frac{x}{2}\)

ta có \(\frac{BC}{AB}=\frac{2BH}{BC}=2cos\left(90-\frac{x}{2}\right)\)

vì \(90\le x< 180=>0< 90-\frac{x}{2}\le45\)=> \(\frac{BC}{AB}=2cos\left(90-\frac{x}{2}\right)\ge2cos\left(45o\right)=\frac{2}{\sqrt{2}}=\sqrt{2}\)

vậy \(\frac{BC}{AB}=\sqrt{2}\)là nhỏ nhất, xảy ra khi 90\(-\frac{x}{2}=45< =>x=90\) hay góc BAC=90o

mn ơi! giúp mk với ; mk sắp phải nộp bài rồi

(Tương tự thế này nha )

Ta có : HCKˆ=HBCˆHCK^=HBC^ ( cùng phụ với BKCˆBKC^ ) ( 1 )

             HCBˆ+HBCˆ=900HCB^+HBC^=900 ( 2 góc nhọn trong tam giác vuông )

            BCAˆ+CBAˆ=900BCA^+CBA^=900 ( 2 góc nhọn trong tam giác vuông )

Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800HCB^+HBC^+BCA^+CBA^=900+900=1800

Hay : HCAˆ+HBAˆ=1800HCA^+HBA^=1800

mà : HBxˆ+HBAˆ=1800HBx^+HBA^=1800 ( hai góc kề bù )

Do đó : HCAˆ=HBxˆ(2)HCA^=HBx^(2)

mà : HBCˆ=HBxˆHBC^=HBx^ ( do By là tia phân giác ) ( 3 )

Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)

11 tháng 7 2017

  Ta có AB^2=AH^2+BH^2 (vi tam giac ABH vuong ơ H) .

Tương tư ta có AC^2=AH^2+CH^2 .=>AB^2+AC^2=2AH^2+BH^2+CH^2 .

<=>BC^2=2AH^2+BH^2+CH^2 (1) .

Lai co BH^2=BE^2+EH^2 ..................... CH^2=CF^2+HF^2 .

=>BH^2+CH^2=BE^2+CF^2+(EH^2+FH^2)=BE^2+... (vì AH^2=EH^2+FH^2) .

Thay vào (1) ta có BC^2=3AH^2+BE^2+CF^2. .

Ta có BE^2=BH^2-EH^2 ..................... CF^2=CH^2-HF^2 .

=>BE^2+CF^2=(BH^2+CH^2)-(EH^2+FH^2)=(BH... . =(BH+CH)^2-2BH*CH-AH^2

=BC^2-2AH^2-AH^2 (vi tam giac ABC vuong o A nen BH*CH=AH^2) .=4a^2-3AH^2 .

Đê BE^2+CF^2 đat min thì AH^2 dat max hay tưc là AH max .

Do goc BAC=90 nen A thuoc đương tròn đương kinh BC .

=>AH lơn nhat khi A là diem chinh giua cung BC.

Hay tam giac ABC vuong can ơ A .(chú ý bài toan chi yeu câu tim ĐK cua tam giac ABC nen ta khong can tim min cua BE^2+CF^2)

Vậy.............

11 tháng 7 2017

Bổ sung câu hỏi chứng minh BC^2=3AH^2+BE^2+CF^2

2 tháng 5 2016

Cho tam giác ABC vuông ở A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuong góc với BC ( H thuộc BC ) Biết HI = 2cm HC= 3cm. Tính Chu vi tam giác ABC

9 tháng 8 2016

a, tam giac BAD co AH vua la dung cao vua la dg trung truc nen do la tam giac can

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).