K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. 

1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)

4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)

\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)

 

 

15 tháng 4 2022

bài 2 là dương nhé

Bài 2: 

a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0

hay x>-2

b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0

hay x<-2/3

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?

15 tháng 8 2023

à bn ơi đề bị sai ạ x+y-2 th ạ

11 tháng 5 2022

a)\(-\dfrac{2}{3}x^6y^3\)ư

hệ số -2/3 

biến \(x^6y^3\)

b) \(\dfrac{5}{8}x^4y^2\)

hệ số 5/8

biến\(x^4y^2\)

c)\(2x^7y^3\)

hệ số : 2

 biến \(x^7y^3\)

28 tháng 4 2020

ko biết

2 tháng 8 2020

a/ \(A=xy-4y-5x+20\)

\(=x\left(y-5\right)-4\left(y-5\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

Thay \(x=14;y=5,5\) vào biểu thức A ta có :

\(A=\left(14-4\right)\left(5,5-5\right)\)

\(=10.0,5=5\)

Vậy...

b/ \(B=xyz-\left(xy+yz+zx\right)+x+y+z-1\)

\(=xyz-xy-yz-zx+x+y+z-1\)

\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(zx-x\right)+\left(z-1\right)\)

\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)

\(=\left(z-1\right)\left(xy-y-x+1\right)\)

\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)

\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

Thay \(x=9,y=10,z=11\) vào biểu thức B ta có :

\(B=\left(9-1\right)\left(10-1\right)\left(11-1\right)\)

\(=720\)

Vậy....

c/ \(C=x^3-x^2y-xy^2+y^3\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)^2\left(x+y\right)\)

Thay \(x=5,75,y=4,25\) vào biểu thức C ta có :

\(C=\left(5,75-5,25\right)^2\left(5,75+5,25\right)=11,25\)

Vậy..

1 tháng 6 2017

1)\(y=\frac{x^2+3x+7}{x+3}=\frac{x\left(x+3\right)+7}{x+3}=x+\frac{7}{x+3}\)= > x +3 thuoc\(U_{\left(7\right)}=\left\{1;-1;7;-7\right\}\)

                                                                                                                  x thuoc \(\left\{-2;-4;3;-11\right\}\)

 2)\(y=\frac{4x+3}{2x+6}=\frac{4x+12-8}{2x+6}=\frac{2\left(2x+6\right)-8}{2x+6}=2-\frac{8}{2x+6}\)   =>2x+6 thuoc 

\(U_{\left(8\right)}=\left\{1;-1;2;-2;4;-4;8;-8\right\}\) 

=>x thuoc \(\left\{-2;-4;-1;-5;1;-7\right\}\)

1 tháng 6 2017

4)\(y=\frac{4x+1}{3x-1}\)

\(3y=\frac{12x+3}{3x-1}=\frac{12x-4+7}{3x-1}=\frac{4\left(3x-1\right)+7}{3x-1}=4+\frac{7}{3x-1}\)

3x+1 thuoc {1;-1;7;-7}

3x thuoc {0;-2;6;-8}

x thuoc {0;2}

a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)

\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)

\(=x^4-y^4\)

Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:

\(A=2^4-\left(-\frac{1}{2}\right)^4\)

\(=16-\frac{1}{16}\)

\(=\frac{255}{16}\)

Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)

b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)

\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)

\(=a^5-b^5\)

Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:

\(B=3^5-\left(-2\right)^5\)

\(=243-\left(-32\right)\)

\(=243+32=275\)

Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2

c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)

\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)

\(=x^4-2x^3y+2y^4+2x^3\)

Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:

\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)

\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)

\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)

\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)

Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)