Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\). Chứng minh x=y=z=t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)
Đẳng thức xảy ra khi x = y = z = t > 0
TH1 : \(x+y+z+t=0\)
=> \(x+y=-\left(z+t\right)\)
\(y+z=-\left(x+t\right)\)
\(z+t=-\left(x+y\right)\)
\(x+t=-\left(y+z\right)\)
\(\Rightarrow\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}=-1\)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-4\)
TH2 : \(x+y+z+t\ne0\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(=\frac{x+y+z+t}{3\left(x+y+z+t\right)}=3\)( do \(x+y+z+t\ne0\))
\(\Rightarrow x=3\left(y+z+t\right)\)
\(y=3\left(z+t+x\right)\)
\(z=3\left(t+x+y\right)\)
\(t=3\left(x+y+z\right)\)
\(\Rightarrow\)\(4x=3\left(x+y+z+t\right)\)
\(4y=3\left(x+y+z+t\right)\)
\(4z=3\left(x+y+z+t\right)\)
\(4t=3\left(x+y+z+t\right)\)
\(\Rightarrow\)\(4x=4y=4z=4t\)
\(\Rightarrow\)\(x=y=z=t\)
\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)\(=1+1+1+1\)\(=4\)
Vậy trong cả 2 trường hợp P đều có giá trị nguyên
Bài trên đúng rồi đó các bạn cho bn ý
Mà đây là Toán 7 thì đúng hơn
\(\Rightarrow\left\{{}\begin{matrix}A=4\\A=-4\end{matrix}\right.\)
Vậy biểu thức A luôn có giá trị nguyên (đpcm).
Chúc bạn học tốt!
\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)
Ta có
\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)
\(\Rightarrow LHS>2\) ( điều phải chứng minh )
đặt A=x/x+y+z +y/y+z+t +z/z+t+x +t/t+x+y
ta có x/x+y+z>x/x+y+z+t
y/y+z+t>y/x+y+z+t
z/z+t+x>z/z+t+x+y
t/t+x+y>t/x+t+y+z
=>A>x/x+y+t+z +t/x+y+t+z +z/x+y+t+z +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4 (1)
*)y/y+z+t<y+x/y+z+t+x
x/x+y+z<x+t/x+y+z+t
z/z+t+x<z+y/x+y+z+t
t/t+x+y<t+z/t+x+y+z
=>A<y+x/x+y+z+t +x+t/x+y+z+t +z+y/x+y+z+t +t+z/x+y+z+t
=y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2 (2)
từ (1) và (2) =>3/4<A<5/2
=>
Ta có:
\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{x+t}{x+y+z+t}+\frac{x+y}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+t}{x+y+z+t}\)
\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<2\)
\(\Rightarrow\frac{3}{4}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{5}{2}\)
Ta có: \(A=\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
\(A>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1>\frac{9}{10}\)
\(A< \frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}+\frac{t+z}{x+y+z+t}=2< \frac{9}{4}\)
Vậy: \(\frac{9}{10}< A< \frac{9}{4}\)
bạn girl làm đúng rồi , giống ý tưởng của mình là đánh giá dãy trên nhỏ hơn 1 và lớn hơn 2
Nhưng bạn nên đánh giá rõ từng phân số nhé , không nên làm tắt như bài của bạn ấy :)
Ta có : x/y+z+t = y/z+t+x = z/t+x+y = t/x+y+z = x+y+z+t/3.(x+y+z+t) = 1/3
=> 3x + x = 3y +y (Dùng quy tắc chuyển vế )
=>.4x = 4y
=> x=y (5)
Từ (5) (6) (7) => x=y=z=t
MONG LÀ CÂU TRẢ LỜI NÀY ĐÚNG ! CHÚC BẠN THÀNH CÔNG