giải phương trình \(\sqrt{x+1}+\sqrt{x-2}-\sqrt{2x+3}+\sqrt{5x+1}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ĐK:\(\begin{cases}25x^2-9 \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}(5x-3)(5x+3) \ge 0\\5x+3 \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}\left[ \begin{array}{l}x\ge \dfrac35\\x \le -\dfrac35\end{array} \right.\\\end{cases}\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x \ge \dfrac35\end{array} \right.\)
`pt<=>\sqrt{5x+3}(\sqrt{5x-3}-2)=0`
`<=>` \(\left[ \begin{array}{l}5x+3=0\\\sqrt{5x-3}=2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\5x-3=4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\dfrac35\\x=7/5\end{array} \right.\)
`b)sqrt{x-3}/sqrt{2x+1}=2`
ĐK:\(\begin{cases}x-3 \ge 0\\2x+1>0\\\end{cases}\)
`<=>x>=3`
`pt<=>sqrt{x-3}=2sqrt{2x+1}`
`<=>x-3=8x+4`
`<=>7x=7`
`<=>x=1(l)`
`c)sqrt{x^2-2x+1}+sqrt{x^2-4x+4}=3`
`<=>sqrt{(x-1)^2}+sqrt{(x-2)^2}=3`
`<=>|x-1|+|x-2|=3`
`**x>=2`
`pt<=>x-1+x-2=3`
`<=>2x=6`
`<=>x=3(tm)`
`**x<=1`
`pt<=>1-x+2-x=3`
`<=>3-x=3`
`<=>x=0(tm)`
`**1<=x<=2`
`pt<=>x-1+2-x=3`
`<=>=-1=3` vô lý
Vậy `S={0,3}`
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
a) \(\sqrt {3{x^2} - 4x - 1} = \sqrt {2{x^2} - 4x + 3} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)
\( \Leftrightarrow x = 2\) hoặc \(x = - 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn
Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)
b) \(\sqrt {{x^2} + 2x - 3} = \sqrt { - 2{x^2} + 5} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}{x^2} + 2x - 3 = - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{4}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn
Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)
c) \(\sqrt {2{x^2} + 3x - 3} = \sqrt { - {x^2} - x + 1} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l}2{x^2} + 3x - 3 = - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)
\( \Leftrightarrow x = - 2\) hoặc \(x = \frac{2}{3}\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.
Vậy phương trình vô nghiệm
d) \(\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \)
Bình phương hai vế của phương trình ta được:
\(\begin{array}{l} - {x^2} + 5x - 4 = - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)
\( \Leftrightarrow x = - 3\) hoặc \(x = 2\)
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.
Vậy nghiệm của phương trình là x = 2.
Điều kiện: \(x\ge2\)
\(\left(\sqrt{x+1}-2\right)+\left(\sqrt{x-2}-1\right)+\left(3-\sqrt{2x+3}\right)+\left(\sqrt{5x+1}-4\right)=0\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{x+1}+2}+\dfrac{x-3}{\sqrt{x-2}+1}-\dfrac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\dfrac{5\left(x-3\right)}{\sqrt{5x+1}+4}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{1}{\sqrt{x+1}+2}+\dfrac{1}{\sqrt{x-2}+1}-\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{5}{\sqrt{5x+1}+4}\right)=0\)
\(\Leftrightarrow x=3\)
PS: Phần trong ngoặc tự chứng minh nha.
Buoc 2 dau ra the phan dua ve phan so