K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có: \((a^2+b^2)(x^2+y^2)=(ax+by)^2 \)

\(\Leftrightarrow\) \(a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2 \)

\(\Leftrightarrow\) \(a^2y^2 + b^2x^2 = 2abxy \)

\(\Leftrightarrow\) \(a^2y^2 + b^2x^2 - 2abxy = 0 \)

\(\Leftrightarrow\) \((ay - bx)^2 = 0 \)

\(\Rightarrow\) \(ay - bx = 0 \)

\(\Rightarrow\) \(ay = bx \)

\(\Rightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)( Đpcm )

17 tháng 10 2017

Thank you bạn

7 tháng 3 2021

\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)

20 tháng 8 2019

Phá ngoặc hết ra rồi phân tích thành tổng 3 bình phương.

Câu hỏi của nguyễn ngọc minh - Toán lớp 8 - Học toán với OnlineMath

26 tháng 2 2016

nhan 2 ve voi a^2+b^2+c^2 dc toan binh phuong ,lon hon 0 nen x=y=z=0

15 tháng 7 2017

CÁCH 1: Theo bất đẳng thức Bunhiacopski ta có:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

CÁCH 2: Nhân tung tóe cả 2 vế ra(đây cũng là cách CM bất đẳng thức bunhia cho bộ 3 số)

1 tháng 7 2016

Cái này có 2 cách : biến dổi tương đương và áp dụng  bất đẳng thức Bu-ni-a

Biến đổi tương đương : \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

Chuyển vế phải qua vế trái rút gọn lại ta được : \(a^2y^2-2axby+b^2x^2=0\)

                                                                      =>\(\left(ay-bx\right)^2=0\)

                                                                     \(\Rightarrow ay-bx=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)

5 tháng 10 2016

cái này là bđt bunhia thì fai bn mở sách ra tham khảo đi