Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mk ké chút nha
13/10 nhân 4/9 cộng 4/15 nhân 7/18 trừ 4/9 nhân 2 nhân 1/3
\(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{2^2}{2}.\frac{3^2}{8}.....\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(=\frac{2.2.3.3.....\left(n+1\right)\left(n+1\right)}{1.3.2.4.....n\left(n+1\right)}\)
\(=\frac{2.3....\left(n+1\right)}{1.2.3....n}.\frac{2.3...\left(n+1\right)}{3.4.5....\left(n+2\right)}\)
\(=\left(n+1\right)\frac{2}{n+2}\)
\(=\frac{2n+2}{n+2}\)
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)
\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)
\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)
Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*
Áp dụng với k = 1,2,3,....,n được :
\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)
\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)
\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)
\(d=\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{1}{n^2+2n}\right)\)
\(d=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...........\dfrac{n^2+2n+1}{n^2+2n}\)
\(d=\dfrac{2^2}{3}.\dfrac{3^2}{8}.\dfrac{4^2}{15}......\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(d=\dfrac{2^2.3^2.4^2......\left(n+1\right)^2}{3.8.15.....n\left(n+2\right)}\)
\(d=\dfrac{2.2.3.3.4.4......\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5......n\left(n+2\right)}\)
\(d=\dfrac{2.3.4......\left(n+1\right)}{1.2.3......n}.\dfrac{2.3.4.....\left(n+1\right)}{3.4.5.....\left(n+2\right)}\)
\(d=\left(n+1\right)\dfrac{2}{n+2}\)
\(d=\dfrac{2n+2}{n+2}\)
mí bạn giải nhanh hộ mk nhoa