CMR \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2} <\frac{79}{48} \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1−12 +13 −14 +15 −16 +...+149 −150. A =(1+13 +15 +...+149 )−(12 +14 +16 +...+150 ).
A =(1+12 +13 +14 +15 +16 +...+149 ...
.........
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....................
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(=2-\frac{1}{n}\)
đpcm
Tham khảo nhé~
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{97}{48^2.49^2}+\frac{99}{49^2.50^2}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{97}{2304.2401}+\frac{99}{2401.2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{2304}-\frac{1}{2401}+\frac{1}{2401}-\frac{1}{2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2500}=\frac{2499}{2500}< 1\left(đpcm\right)\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)
Tham khảo nè:
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 chứng minh
k² > k² - 1 = (k-1)(k+1)
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)
Áp dụng (*), ta có:
1/2² + 1/3² + 1/4² + ... + 1/n²
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3
@Akai Haruma giúp mình