K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Đáp án đúng : A

12 tháng 6 2019

30 tháng 9 2017

Câu 1:

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)

b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Câu 2:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)

\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)

..............

\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)

Nhân các vế (1),(2)....(2017) ta được:

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)

Vậy...

Câu 3:

\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)

\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)

\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)

\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)

Đến đây thfi làm giống câu 2

18 tháng 6 2018

cho x1, x2 , x3 là 3 số thực khác 0 thỏa mãn x1 + x2 + x3 = a ; x1x2 + x2x3 + x1x3 = 0 ; x1x2x3 = b

CMR: a/b < 0

26 tháng 12 2019

Chọn A.

Dãy số liệu thứ 2 có 2 số liệu khác với dãy số liệu 1 là số đứng ở vị trí đầu tiên và số đứng ở vị trí cuối cùng. Tuy nhiên tổng của số đứng đầu tiên + số đứng ở vị trí cuối cùng không thay đổi. Do đó; số trung bình không thay đổi.

23 tháng 4 2019

Bài 1 : 

8x - 0,4 = 7,8*x + 402

8x - 7,8*x = 402 + 0,4

0,2*x = 402,04

x= 402,04 : 0,2

x = 2012

23 tháng 4 2019

Bài 2

Theo bài ra , số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C

=> Số học sinh lớp 6A bằng 1/3 số học sinh của cả 3 lớp

Số học sinh lớp 6A là :

  120  x  1/3  =  40 học sinh

Tổng số học sinh lớp 6B và 6C là :

  120  -  40  =  80 học sinh

Số học sinh lớp 6B là :

  ( 80 - 6 ) : 2 = 37 học sinh

Số học sinh lớp 6C là :

  37  +  6  =  43 học sinh

19 tháng 7 2023

Để chứng minh CMR này, chúng ta sẽ xem xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 + a2.a3 + a3.a4 + ... + an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì vậy, ta có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) Trong mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 2. Vậy Sn = 2k = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có thể viết lại Sn thành: Sn = (a1.a2 + a3.a4) + (a5.a6 + a7.a8) + ... + (an-1.an + a1.a2) + an.a1 Nhưng lần này, chúng ta còn có thêm một số cuối cùng là an.a1. Xét mỗi cặp số (ai.ai+1 + ai+2.ai+3), khi nhân hai số bằng nhau, ta vẫn có kết quả là 1. Nhưng khi nhân số cuối cùng an.a1 với một số bằng -1, ta có kết quả là -1. Vì vậy, tổng của mỗi cặp số là 2, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 2 - 1 = 1 hoặc 2 + 1 = 3. Vậy Sn = 1 hoặc 3, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4

19 tháng 7 2023

Để chứng minh CMR này, chúng ta sẽ xét các trường hợp khác nhau khi n chia hết cho 4 và khi n không chia hết cho 4. Trường hợp 1: n chia hết cho 4 (n = 4k) Trong trường hợp này, chúng ta có n số a1, a2, a3, ..., an. Ta cần tính giá trị Sn = a1.a2 a2.a3 a3.a4 ... an.a1. Chú ý rằng mỗi số a1, a2, a3, ..., an xuất hiện đúng 2 lần trong Sn. Vì số bằng 1 hoặc -1, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Với n chia hết cho 4, ta có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Vì vậy, tổng của mỗi cặp số này sẽ luôn bằng 1. Vậy Sn = 1 + 1 + ... + 1 (n/2 lần) = n/2 = 0 khi và chỉ khi n chia hết cho 4. Trường hợp 2: n không chia hết cho 4 (n = 4k + m, với m = 1, 2, 3) Trong trường hợp này, chúng ta cũng có số lẻ các cặp số (ai.ai 1 ai 2.ai 3). Trong mỗi cặp này, khi nhân hai số bằng nhau, ta luôn có kết quả là 1. Tuy nhiên, chúng ta còn có một số cuối cùng là an.a1. Với mỗi số bằng 1 hoặc -1, khi nhân với -1, ta sẽ đổi dấu của số đó. Vì vậy, tổng của mỗi cặp số là 1, nhưng khi cộng thêm số cuối cùng an.a1, tổng sẽ có thể là 1 - 1 = 0 hoặc 1 + 1 = 2. Vậy Sn = 0 hoặc 2, không bao giờ bằng 0 khi n không chia hết cho 4. Từ hai trường hợp trên, ta có thể kết luận rằng Sn = 0 khi và chỉ khi n chia hết cho 4.

25 tháng 3 2020

Ta có với số nguyên a bất kì:

 | a | - a = a - a = 0 là số chẵn nếu  a\(\ge\)0

| a | - a = -a - a = -2a là số chẵn nếu a < 0

Tóm lại: | a | - a là số chẵn với a nguyên bất kì 

=> | a1 - a2 | - ( a1 - a2) là số chẵn

 | a2 - a3 | - ( a2 - a3) là số chẵn

 | a3 - a4 | - ( a3 - a4) là số chẵn

....

 | an- a1 | - ( an - a1) là số chẵn

=> [ | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1| ] - [( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1) ] là số chẵn 

mà   ( a1 - a2) + (a2 - a3) + ( a3 - a4)+...+ (an - a1)  = 0 là số chẵn 

=> | a1 - a2| + |a2 - a3| + | a3 - a4| +...+ |an - a1|  là số chẵn 

Vậy S luôn là 1 số chẵn.