giair giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo ở đây nha :
Bài 32 : Các khu vực Châu Phi | Học trực tuyến
Bài 33 : Các khu vực Châu Phi (tiếp theo) | Học trực tuyến
a/b = b/c= c/a = a+b+c / a+b+ c = 1 tính chất dãy tỉ số bằng nhau)
vậy nên a= b=c
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\) (1)
\(\frac{b}{c}=1\Rightarrow b=c\) (2)
\(\frac{c}{a}=1\Rightarrow c=a\) (3)
Từ (1);(2) và (3) suy ra a = b = c (ĐPCM)
Để \(b=\overline{x208y}⋮2;5\Rightarrow y=0\)
Ta có: \(b=\overline{x2080}\)
Để \(b⋮3\) thì \(\left(x+2+0+8+0\right)⋮3\Leftrightarrow\left(x+10\right)⋮3\Leftrightarrow x\in\left\{2;5;8\right\}\)
Vậy: ...
36 x ( 10 + 1 )
= 36 x 11
= 396
36 x 10 + 36 x 1
= 360 + 36
= 396
Cách 1 :
36 x ( 10 + 1 )
= 36 x 11
= 396
Cách 2 :
36 x ( 10 + 1 )
= 36 x 10 + 36 x 1
= 360 + 36
= 396
+ Trường hợp 1:
Nếu \(x\ge2\)phương trình đã cho trở thành: \(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\left(l\right)\\x=\sqrt{5}\left(tm\right)\\x=-\sqrt{5}\end{cases}}\)(Dấu ngặc vuông nha)
+ Trường hợp 2:
Nếu \(x< 2:\)phương trình đã cho trở nhành:\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\left(vn\right)\)
Vậy phương trình có nghiệm là \(x=\sqrt{5}\)
\(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)
\(\Leftrightarrow x^4-4x^2-x^2+4=4\)
\(\Leftrightarrow x^4-5x^2=0\)
\(\Leftrightarrow x^2\left(x^2-5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)
Chỉ thấy \(\sqrt{5}>\sqrt{4}=2\)nên \(\sqrt{5}\)là 1 nghiệm của pt đang xét.
+) Xét \(x< 2\)
\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)
\(\Leftrightarrow x^4-4x^2-x^2+4=-4\)
\(\Leftrightarrow x^4-5x^2+8=0\)(1)
Đặt \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t^2-5t+8=0\)(2)
Mà \(t^2-5t+8=\left(t-\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\) (2) không xảy ra
Lúc đó pt đang xét vô nghiệm.
Vậy \(S=\left\{\sqrt{5}\right\}\)