Có 3 quyển sách Toán ; 4 quyển sách Văn và 5 quyển sách Anh. Hỏi có bao nhiêu cách sắp xếp 3 quyển sách Toán ; 3 quyển sách Văn và 3 quyển sách Anh
a) Vào 1 kệ dài ?
b) 1 kệ dài sao cho các quyển sách cùng loại nằm kề nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Lấy ngẫu nhiên 3 cuốn sách có: C 9 3 = 84 cách
Gọi A là biến cố: Lấy 3 cuốn sách và không có cuốn nào là cuốn toán
Suy ra A ¯ là biến cố: 3 quyển được lấy ra có ít nhất một quyển là toán
Khi đó Ω A = C 5 3 = 10 .
Vậy p A = Ω A Ω = 10 84 = 5 42 ⇒ p A ¯ = 1 − p A = 37 42
Đáp án A
Tổng số quyển sách trên giá là: 4 + 3 + 2 = 9 (quyển).
Số cách lấy ra 3 quyển sách từ 9 quyển sách đó là: C 9 3 .
Số cách lấy ra 3 quyển sách trong đó không có quyển sách toán nào là: C 5 3 .
Xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán là C 9 3 − C 5 3 C 9 3 = 37 42
Đáp án A
Tổng số quyển sách trên giá là: 4 + 3 + 2 = 9 (quyển).
Số cách lấy ra 3 quyển sách từ 9 quyển sách đó là: C 9 3 .
Số cách lấy ra 3 quyển sách trong đó không có quyển sách toán nào là: C 5 3 .
Xác suất để 3 quyển được lấy ra có ít nhất một quyển là toán là C 9 3 - C 5 3 C 9 3 = 37 42
Đáp án C
Lấy ngẫu nhiên 3 cuốn sách có: C 9 3 = 84 cách
Gọi A là biến cố:
Lấy 3 cuốn sách và không có cuốn nào là cuốn toán
Suy ra A ¯ là biến cố:
3 quyển được lấy ra có ít nhất một quyển là toán
Khi đó Ω A = C 5 3 = 10
Vậy P A = Ω A Ω = 5 42
⇒
p
A
¯
=
1
-
p
A
=
37
42
Đáp án C
Phương pháp.
Sử dụng định nghĩa của xác suất.
Lời giải chi tiết.
Tổng số sách là 4 + 3 + 2 = 9. Số cách lấy 3 quyển sách là C 9 3 = 84 (cách).
Số quyển sách không phải là sách toán là 3 + 2 = 5
Số cách lấy 3 quyển sách không phải là sách toán là C 5 3 = 10 (cách).
Do đó số cách lấy được ít nhất một quyển sách toán là 84 - 10 = 74 (cách).
Vậy xác suất để lấy đượcc ít nhất một quyển là toán là 74 84 = 37 42
Chọn đáp án C.
Số kết quả có thể khi chọn bất kì 3 quyển sách trong 9 quyển sách là C 9 3 = 84 .
Gọi A là biến có “Lấy được ít nhất 1 sách toán trong 3 quyển sách.”
A là biến cố “Không lấy được sách toán trong 3 quyển sách.”
Ta có xác suất để xảy ra A là P A = 1 - P A = 1 - C 5 3 84 = 37 42 .
Số cách chọn 3 quyển sách văn là \(C^3_4=4\).
Số cách chọn 3 quyển sách anh là \(C^3_5=10\).
a, Số cách sắp xếp vào 1 kệ dài là \(9!.4.10=14515200\) cách.
b, Coi số sách mỗi loại là một phần tử.
Số cách sắp xếp thỏa mãn yêu cầu bài toán là \(3!.4.10=240\) cách.
a, mình nghĩ là 216
b,6 chắc
tik mik nhha