Tìm Max của \(\left|x-4\right|\left(2\left|x-4\right|\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)
Ta có:
P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)
P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)
=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)
Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)
Ta có :
P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)
Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)
<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)
=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)
\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)
Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...
Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)
<=> x=-y=\(\dfrac{1}{\sqrt{3}}\)
Cho \(x^4+y^4+z^4=3\). Tìm MAX của \(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
Ta có:
\(3x^4+1=x^4+x^4+x^4+1\ge4\sqrt[4]{x^4.x^4.x^4.1}=4x^3\)
Tương tự: \(3y^4+1\ge4y^3\) ; \(3z^4+1\ge4z^3\)
=> \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\) (1)
Thay vào:
\(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)
\(A=x^3+x^2y+y^3+y^2z+z^3+z^2x\)
\(A=x^3+y^3+z^3+\left(x^2y+y^2z+z^2x\right)\)
\(\le x^3+y^3+z^3+\left(\frac{x^3+x^3+y^3+y^3+y^3+z^3+z^3+z^3+x^3}{3}\right)\)
\(=2\left(x^3+y^3+z^3\right)\)
\(=\frac{1}{2}\left[4\left(x^3+y^3+z^3\right)\right]\le\frac{1}{2}\left[3\left(x^4+y^4+z^4\right)+3\right]\)
\(=\frac{1}{2}\left[3.3+3\right]=\frac{12}{2}=6\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
Vậy Max(A) = 6 khi x = y = z = 1
\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)
\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)
\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A\le1\)
Dấu "=" xảy ra khi x=y=1.
Vậy MaxA là 1, đạt được khi x=y=1.
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Lời giải:
Đặt $xy=t$
Áp dụng BĐT AM_GM:
$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$
Ta có:
$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$
$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$
$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$
$=x^4y^4+2x^2y^2-48xy+145$
$=t^4+2t^2-48t+145$
$=t(t^3+2t-48)+145$
Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$
$\Rightarrow P\leq 145$
Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.
\(A=\left(\dfrac{x^2}{\left(x+1\right)^3}\right)^2=\left(\dfrac{x^2}{x^3+3x^2+3x+1}\right)^2=\left(\dfrac{1}{x+\dfrac{3}{x}+\dfrac{1}{x^2}+3}\right)^2\)
\(A=\left(\dfrac{1}{x+\dfrac{4}{x}+\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}\right)^2\le\left(\dfrac{1}{x+\dfrac{4}{x}+\dfrac{11}{4}}\right)^2\)
\(A\le\left(\dfrac{1}{2\sqrt{\dfrac{4x}{x}}+\dfrac{11}{4}}\right)^2=\dfrac{16}{729}\)
Dấu "=" xảy ra khi \(x=2\)
x càng lớn thì biểu thức càng lớn nên cái này k có max bạn nhé
ok cảm ơn bạn