K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

a/ Ta có :

\(\dfrac{x}{19}=\dfrac{y}{21}\) \(\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\Leftrightarrow x=38\\\dfrac{y}{21}=2\Leftrightarrow y=42\end{matrix}\right.\)

Vậy ..

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...

8 tháng 7 2019

Hướng dẫn 1 phần : ko biết thì hỏi 

a) áp dụng tính chất của dãy tỉ số bằng  nhau ta có

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)

\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)

Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)

15 tháng 5 2018

M =   99 - 100 - 1 99 + 1 + 100 = - 2 200 = - 1 100

Đáp án A

ta có : \(\frac{x}{7}=\frac{y}{13}\)

ADTCDTSBN : 

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14\)

\(\frac{y}{13}=2\Leftrightarrow y=26\)

KL : ... 

kb nhoa 

13 tháng 2 2019

Viết sai chữ Thanks kìa

8 tháng 10 2020

a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

Suy ra :

+) \(\frac{x}{7}=2\Leftrightarrow x=14\)

+) \(\frac{y}{13}=2\Leftrightarrow y=26\)

Vậy x = 14 ; y = 26

b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Suy ra :

+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)

+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)

Vậy x = - 51 ; y = - 9

c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Suy ra :

+) \(\frac{x}{19}=2\Leftrightarrow x=38\)

+) \(\frac{y}{21}=2\Leftrightarrow y=42\)

Vậy x = 38 ; y = 42

d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra :

+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)

Vậy x =\(\pm\)6 ; y =\(\pm\)8

8 tháng 10 2020

a,AD t/c DTS bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)

b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

AD t/c DTS bằng nhua ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)

c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

AD t/c DTS bằng nhau ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)

d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)

\(\Rightarrow x^2=9k;y^2=16k\)

\(\Rightarrow x^2+y^2=9k+16k=25k=100\)

\(\Rightarrow k=4\)

\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

24 tháng 9 2019

a) Tìm được A = (x- y)(x + 5y).

Thay x = 4 và y = -4 vào A tìm được A = -128.

b) Tìm được B = 9 ( x   - 1 ) 2 .

Thay x = - 4 vào B tìm được B = 81 4 .  

c) Tìm được C = (x - y)(y - z)(x - z).

Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.

d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.

29 tháng 10 2023

a) \(\left(2x+3y\right)^2=\left(2x\right)^2+2\cdot2x\cdot3y+\left(3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x+\dfrac{1}{4}\right)^2=x^2+2\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{4}\right)^2=x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)

c) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2=x^4-\dfrac{4}{25}y^2\)

d) \(\left(2x+y^2\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y^2+3\cdot2x\cdot\left(y^2\right)^2+\left(y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

e) \(\left(3x^2-2y\right)^2=\left(3x^2\right)^2-2\cdot3x^2\cdot2y+\left(2y\right)^2=9x^4-12x^2y+4y^2\)

f) \(\left(x+4\right)\left(x^2-4x+16\right)=x^3+4^3=x^3+64\)

g) \(\left(x^2-\dfrac{1}{3}\right)\cdot\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

31 tháng 7 2016

Hỏi đáp Toán

31 tháng 7 2016

a.

\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{14}{17}\)

\(\frac{2x}{38}=\frac{14}{17}\Rightarrow x=\frac{266}{17}\)

\(\frac{y}{21}=\frac{14}{17}\Rightarrow y=\frac{294}{17}\)

b.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\frac{x^2}{9}=4\Rightarrow x=\pm6\)

\(\frac{y^2}{16}=4\Rightarrow y=\pm8\)