Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Cmr: BH.BD+CH.CE=BC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ HF vuông góc với BC, F thuộc BC
Ta chứng minh được tg BHF đồng dạng với tg BCD
=> BH/BC = BF/BD => BH.BD=BC.BF
tg CHF đồng dạng với tg CBE
=>CH/CB= CF/CE=CB.CF
=>BH.BD+CH.CE=CB.BF=CB.CB=BC2
A B C D E H M
Kẻ HM | BC
+) Tam giác BHM đồng dạng với tam giác BCD ( có góc BEH = BDC = 90o; góc CBD chung)
=> BM/ BD = BH/ BC => BM. BC = BH. BD (1)
+) Tương tự, tam giác CMH đồng dạng với tam giác CEB ( có góc BCE chung ; góc HMC = CEB = 90o)
=> CH/ CB = CM/ CE =>CM .CB = CH. CE (2)
Cộng từng vế của (1)(2) => BM.BC + CM.CB = BH.BD + CH .CE => (BM + CM).CB = BH.BD + CH.CE
=> BC2 = BH.BD + CH.CE
Vậy...
A B C D E H K
Kẻ HK vuông góc với BC
Xét tam giác BKH và BDC có: góc CBD chung; góc HKB = BDC (= 90o)
=> tam giác BKH đồng dạng với BDC (g - g)
=> BK/BD = BH/ BC => BH.BD = BK. BC (1)
+) Tương tự, tam giác CKH đồng dạng với tam giác CEB (g - g)
=> CK/ CE = CH/BC => CH . CE = CK.BC (2)
Từ (1)(2) => BH.BD + CH.CE = BK.BC + CK. BC = (BK+ CK). BC = BC.BC = BC2
A B C F D E H
Xét \(\Delta BHF\)và \(\Delta BCD\)
có \(\widehat{BEH}=\widehat{BDC}=90^0\)và \(\widehat{DBC}\)chung
\(\Rightarrow\Delta BHF~\Delta BCD\left(g-g\right)\)\(\Rightarrow\frac{BF}{BD}=\frac{BH}{BC}\Rightarrow BF.BC=BH.BD\left(1\right)\)
Xét \(\Delta CFH\)và \(\Delta CEB\)
có \(\widehat{CFH}=\widehat{CEB}=90^0\)và \(\widehat{ECB}\)chung
\(\Rightarrow\Delta CFH~\Delta CEB\left(g-g\right)\)\(\Rightarrow\frac{CH}{CB}=\frac{CF}{CE}\Rightarrow CB.CF=CH.CE\left(2\right)\)
Cộng (1) với (2) ta được \(BF.BC+CF.CB=BH.HD+CH.CE\)
\(\Rightarrow\left(BF+CF\right)CB=BH.BD+CH.CE\)hay \(BH.BD+CH.CE=BC^2\left(đpcm\right)\)
Vậy ....
A B C D E H M
Kẻ HM vuông góc BC ( M thuộc BC )
\(\Delta BHM~\Delta BCD\left(g.g\right)\) \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BD}\Rightarrow BH.BD=BC.BM\) ( 1 )
\(\Delta CHM~\Delta CBE\left(g.g\right)\Rightarrow\frac{CH}{BC}=\frac{CM}{CE}\Rightarrow CH.CE=BC.CM\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow BH.BD+CH.CE=BC\left(BM+CM\right)=BC^2\)
Gợi ý: Gọi , chứng minh được AK ^ BC.
Áp dụng cách làm tương tự 4A suy ra ĐPCM
Gọi giao của AH với BC là K
=>AH vuông góc BC tại K
Xét ΔBKH vuông tại K và ΔBDC vuông tại D có
góc KBH chung
=>ΔBKH đồng dạng với ΔBDC
=>BK/BD=BH/BC
=>BD*BH=BK*BC
Xét ΔCKH vuông tại K và ΔCEB vuông tại E có
góc KCH chung
=>ΔCKH đồng dạng với ΔCEB
=>CK/CE=CH/CB
=>CK*CB=CE*CH
BH*BD+CE*CH
=BK*BC+CK*BC
=BC^2
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
b: ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
b: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc ADE=góc ABC