K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

không tồn tại a,b thỏa mãn

Ta có 1/a-1/b=(b-a)/ab ( quy đồng lên) 
1/a-1/b=1/(a-b) 
⇔ (b-a)/ab=1/(a-b) 
⇔ -(a-b)²=ab ( nhân chéo) 
⇔ -a²-b²+2ab=ab 
⇔ ab=a²+b² (*) 
Vì a,b dương => a²+b² ≥ 4ab ( bất đẳng thức cô si) 
=>(*) không thõa mãn . Vậy không có cặp số dương a,b thõa mãn đề ra 

8 tháng 2 2018

\(B=\frac{ab}{\left(a-1\right)\left(b-1\right)}=\frac{ab}{ab-a-b+1}=\frac{ab}{ab-\left(a+b\right)+1}=\frac{ab}{ab-3+1}\)(do a+b=3)

\(=\frac{ab}{ab-2}=1+\frac{2}{ab-2}\ge1+\frac{2}{\frac{\left(a+b\right)^2}{4}-2}=1+\frac{2}{\frac{9}{4}-2}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{3}{2}\)

31 tháng 8 2019

Ta co:\(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

Dat \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}.\frac{a^2+b^2}{a^2b^2}\ge\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{ab}\ge1+\frac{15}{16}.\frac{2}{\frac{1}{4}}=\frac{17}{2}\)

Dau '=' xay ra \(a=b=\frac{1}{2}\)

Vay \(P_{min}=\frac{17}{2}\)khi \(a=b=\frac{1}{2}\)

6 tháng 6 2016

Do a=b nên ở bước => a(b-a)=(b-a)(b+a)  đã bằng 0 rồi