K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

\(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=4.\left(\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{399}\right)=4.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\right)=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\right]=4.\left[\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\right]=2.\left(\dfrac{7-1}{21}\right)=\dfrac{12}{21}=\dfrac{4}{7}\)

Giải:

\(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\) 

\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{19.21}=\dfrac{x}{49}\) 

\(2.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\) 

\(2.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)=\dfrac{x}{49}\) 

\(2.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)=\dfrac{x}{49}\) 

\(2.\dfrac{2}{7}=\dfrac{x}{49}\) 

   \(\dfrac{4}{7}=\dfrac{x}{49}\) 

\(\Rightarrow x=\dfrac{4.49}{7}=28\) 

Chúc bạn học tốt!

15 tháng 5 2021

 \(\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{399}=\dfrac{x}{49}\)

 2 . \(\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{399}=\dfrac{x}{49}\) 

 2 . \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}=\dfrac{x}{49}\)

 2 . ( \(\dfrac{1}{3}-\dfrac{1}{21}\) ) = \(\dfrac{x}{49}\)

 2 . \(\dfrac{2}{7}\) = \(\dfrac{x}{49}\)

=> \(\dfrac{4}{7}=\dfrac{x}{49}\)

=> \(\dfrac{21}{49}=\dfrac{x}{49}\)

=> \(x=21\)

Vậy \(x=21\)

 

 

 

Ta có : \(\dfrac{4}{15}+\dfrac{4}{35}+\dfrac{4}{63}+...+\dfrac{4}{399}=\dfrac{x}{49}\)

\(\Leftrightarrow2\cdot\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{19.21}\right)=\dfrac{x}{49}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}=\dfrac{x}{98}\)

\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{21}=\dfrac{x}{98}\)

\(\Leftrightarrow\dfrac{2}{7}=\dfrac{x}{98}\Rightarrow x=28\)

Vậy $x=28$

13 tháng 3 2023

`A =2/15 +2/35 +2/63 +... +2/339`

`= 2/(3.5) +2/(5.7) + 2/(7.9) + ...+2/(19.21)`

`= 1/3 -1/5 +1/5 -1/7 +1/7 -1/9 +... 1/19 -1/21`

`= 1/3 -1/21 = 7/21 -1/21`

`=6/21 = 2/7`

13 tháng 3 2023

A=2/15+2/35+2/63+...+2/339

=2/(3.5)+2/(5.7)+2/(7.9)+...+2/(19.21)=2/(3.5)+2/(5.7)+2/(7.9)+...+2/(19.21)

=1/3−1/5+1/5−1/7+1/7−1/9+...1/19−1/21=1/31/5+1/51/7+1/71/9+...1/191/21

=1/3−1/21=7/21−1/21=1/31/21=7/211/21

=6/21=2/7=6/21=2/7

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Lời giải:
Vế trái luôn không âm (tính chất trị tuyệt đối)

$\Rightarrow -11x\geq 0$

$\Rightarrow x\leq 0$

Do đó: $x-\frac{1}{3}, x-\frac{1}{15},..., x-\frac{1}{399}<0$

PT trở thành:
$\frac{1}{3}-x+\frac{1}{15}-x+...+\frac{1}{399}-x=-11x$

$(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{399})-10x=-11x$

$\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}=-x$

$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{19}-\frac{1}{21})=-x$

$\frac{1}{2}(1-\frac{1}{21})=-x$

$\frac{10}{21}=-x$

$\Rightarrow x=\frac{-10}{21}$

8 tháng 5 2022

\(=2\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{17.19}\right)\)

\(=2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{17}-\dfrac{1}{19}\right)\)

\(=2\left(\dfrac{1}{3}-\dfrac{1}{19}\right)=2\text{ }\times\dfrac{16}{57}=\dfrac{32}{57}\)

8 tháng 7 2017

\(A=\dfrac{14}{8.11}+\dfrac{14}{11.14}+\dfrac{14}{14.17}+.....+\dfrac{14}{197.200}\)

\(A=\dfrac{14}{3}\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\dfrac{24}{200}=\dfrac{28}{25}\)

\(B=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+...+\dfrac{7}{399}\)

\(B=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+.....\dfrac{7}{19.21}\)

\(B=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\dfrac{6}{21}=1\)