chung minh rang 1/2 +1/3 +1/4+....+1/63<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
(*)Ta có:
1/13<1/12
1/14<1/12
1/15<1/12
=>1/13+1/14+1/15<1/12
(*)Ta lại có:
1/61<1/60
1/62<1/60
1/63<1/60
=>1/61+1/62+1/63<1/60
=>S<1/5+1/12.3+1/60.3
S<1/5+1/4+1/20
S<1/2
Với mọi k, n Є N+, n ≥ 2 có 1 / (k + 1) + 1 / (k + 2) + ... + 1 / (k + n) < n / (k + 1)
=>
1 = 1
1 / 2 + 1 / 3 < 2 / 2 = 1
1 / 4 + 1 / 5 + 1 / 6 + 1 / 7 < 4 / 4 = 1
1 / 8 + ... + 15 < 8 / 8 = 1
1 / 16 + ... + 1 / 31 < 16 / 16 = 1
1 / 32 + ... + 1 / 63 < 32 / 32 = 1
Cộng vế theo vế có 1 + 1 / 2 + ... + 1 / 63 < 6
1+1/2+1/3+1/4+...+1/63=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+...+1/15)+(1/16+1/17+..,+1/31)+(1/32+1/33+...+1/63)
<1+(1/2+1/2)+(1/4+1/4+1/4+1/4)+(1/8+1/8+...+1/8)+(1/16+1/16+...+1/16)+(1/32+1/32+...+1/32)
<1+1+1+1+1+1=6
có: 1/3^2<1/2.3; 1/4^2<1/3.4:...: 1/100^2<1/99.100
Mà: 1/1.2+1/2.3+...+1/99.100=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100
=99/100
=> 1/3^2+1/4^2+...+1/100^2<99/100<1
=> đpcm
UNDERSTAND ???
Đặt \(A=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{20!}\) ta có :
\(A=\frac{1.2}{1.2.3}+\frac{1.2}{1.2.3.4}+\frac{1.2}{1.2.3.4.5}+...+\frac{1.2}{1.2.3...20}\)
\(A< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}\)
\(A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(A< \frac{1}{1.2}-\frac{1}{19.20}\)
\(2A< 1-\frac{2}{19.20}< 1\)
Vì \(2A< 1\) nên \(A< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5