Cho 2 số tự nhiên a và b; a >2 b>2
Chứng minh rằng: a+b < a*b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 12 = 1.12 = 2.6 = 3.4 = 4.3 = 6.2 = 12.1
2) 12 = 1.12 = 2.6 = 3.4
Vậy (a; b) ∈ {(1; 12); (2; 6); (3; 4)}
3) 30 = 1.30 = 2.15 = 3.10 = 5.6 = 6.5 = 10.3 = 15.2 = 30.1
4) 30 = 30.1 = 15.2 = 10.3 = 6.5
Vậy (a; b) ∈ {(30; ); (15; 2); (10; 3); (6; 5)}
a, Ta có: 12 = 1 x 12; 2 x 6; 3 x 4
b, Ta có: 12 = 1 x 12; 2 x 6; 3x 4
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3}
=> b ϵ {12; 6; 4}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 12); (2; 6); (3; 4)}
c, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
d, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a > b
=> a = 30; b = 1
=> a = 15; b = 2
=> a = 10; b = 3
=> a = 6; b = 5
Vậy ta có các cặp số (a; b) thỏa mãn đề bài là:
(a; b) ϵ {(30; 1); (15; 2); (10; 3); (6; 5}
Vì là số có 2 chữ số và chữ số giống nhau nên 2 số có dạng aa và bb.
Vì 2 số này đều ko chia hết cho 2 và 5 nên a và b ko thể là chữ số chẵn hoặc 5, vậy a và b chỉ có thể là 1, 3,7,9.
Vì 2 số ko chia hết cho 3 nên tổng a+a hoặc b+b cũng ko chia hết cho 3.
Vậy a, b ko thể là 3 hoặc 9.
2 số cần tìm là 11 và 77.
Tổng 2 số là 88 nên chia hết cho 1,2,4,8,11,22,44,88
a) Vì A và B đều không chia hết cho 2 và 5 nên A và B chỉ có thể có tận cùng là 1 ; 3 ; 7 ; 9. Vì 3 + 3 = 6 và 9 + 9 = 18 là 2 số chia hết cho 3 nên loại trừ số 33 và 99. A < B nên A = 11 và B = 77.
b) Tổng của hai số đó là : 11 + 77 = 88.
Ta có :
88 = 1 x 88 = 2 x 44 = 4 x 22 = 8 x 11.
Vậy tổng 2 số chia hết cho các số : 1 ; 2 ; 4 ; 8 ; 11 ; 22 ; 44 ; 88.
Vì là số có 2 chữ số và chữ số giống nhau nên 2 số có dạng aa và bb. Vì 2 số này đều ko chia hết cho 2 và 5 nên a và b ko thể là chữ số chẵn hoặc 5, vậy a và b chỉ có thể là 1, 3,7,9. Vì 2 số ko chia hết cho 3 nên tổng a+a hoặc b+b cũng ko chia hết cho 3. Vậy a, b ko thể là 3 hoặc 9. 2 số cần tìm là 11 và 77. Tổng 2 số là 88 nên chia hết cho 1,2,4,8,11,22,44,88