Cho x+y=a+b
và \(x^2+y^2=a^2+b^2\)
Chứng minh \(x^3+y^3=a^3+b^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
ta có : \(x^2+y^2=a^2+b^2\Leftrightarrow x^2+2xy+y^2-2xy=a^2+2ab+b^2-2ab\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\) (vì : \(x+y=a+b\))
\(\Rightarrow-2xy=-2ab\Leftrightarrow xy=ab\)
ta có : \(x+y=a+b\Leftrightarrow\left(x+y\right)^3=\left(a+b\right)^3\)
\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=a^3+b^3+3ab\left(a+b\right)\)
(vì : \(x+y=a+bvàxy=ab\))
\(\Rightarrow x^3+y^3=a^3+b^3\) (đpcm)
b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...
Ai giải đc nhanh giúp mik vs
cho x^2+y^2=1 và x^4/a+y^4/b=1/a+b. Chứng minh x^6/a^3+y^6/b^3=2/(a+b)^3
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Bài 1:
a) \(\left(x+y\right)^2-y^2=x^2+2xy+y^2-y^2=x^2+2xy=x\left(x+2y\right)\)
b) Sửa đề: \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\left(x+y\right)^2\)
c) \(x\left(x-3y\right)^2+y\left(y-3x\right)^2=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)
\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)
\(=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3\)
Bài 2:
a) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2b\left(b^2+3a^2\right)\)
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
Từ \(x+y=a+b\Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\)
\(\Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\)
Do \(x^2+y^2=a^2+b^2\Rightarrow2xy=2ab\Rightarrow xy=ab\)
\(\Rightarrow-xy=-ab\)
Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=a^3+b^3\)
Hay \(x^3+y^3=a^3+b^3\left(đpcm\right)\)
Theo bài ra ta có :
\(x+y=a+b\\ \Rightarrow\left(x+y\right)^2=\left(a+b\right)^2\\ \Rightarrow x^2+2xy+y^2=a^2+2ab+b^2\\ \text{Mà }x^2+y^2\\ =a^2+b^2\\ \Rightarrow2xy=2ab\\ \Rightarrow xy=ab\\ \Rightarrow\left(x^2+y^2\right)-xy=\left(a^2+b^2\right)-ab\\ \Rightarrow x^2-xy+y^2= a^2-ab+b^2\\ \Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\\ \Rightarrow x^3+y^3=a^3+b^3\left(đpcm\right)\)
Vậy...........................................................(ghi lại đpcm)