A=3^1 + 3^2 + ... +3^2006
tìm x biết : 2A + 3 = 3^x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
suy ra 3.A=3^2+...+3^101
3A-A=(3^2+...+3^101)-(3+...+3^100)
2A=3^101-3
A=(3^101-3):2
2A+3=(3^101-3):2.2+3
=3^101-3+3
=3^101
3^x=3^101
Vậy x =101
1:
a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)
b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)
a) Ta có : \(3A=3^{2007}+3^{2006}+...+3^3+3^2\)
A = \(3^{2006}+...+3^3+3^2+3\)
\(\Rightarrow2A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) Ta có \(2A=3^{2007}-3\)\(\Rightarrow2A+3=3^{2007}\)
Theo bài ta có: \(2A+3=3x\)
\(\Rightarrow3^{2007}=3x\)
\(\Rightarrow3.3^{2006}=3x\)
\(\Rightarrow x=3^{2006}\)
Bài 1:
a)\(\begin{cases}\left(x-3\right)^2+\left(y+2\right)^2=0\\\begin{cases}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-3\right)^2=0\\\left(y+2\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=-2\end{cases}\)
b) tương tự
b) (x-12+y)200+(x-4-y)200= 0
\(\begin{cases}\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\\\begin{cases}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{cases}\end{cases}\)
\(\Rightarrow\begin{cases}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{cases}\)\(\Rightarrow\begin{cases}x-12+y=0\\x-4-y=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=12\left(1\right)\\x-y=4\left(2\right)\end{cases}\)
Trừ theo vế của (1) và (2) ta được:
\(2y=8\Rightarrow y=4\)\(\Rightarrow\begin{cases}x+4=12\\x-4=4\end{cases}\)\(\Rightarrow x=8\)
Vậy x=8; y=4
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
1) \(2xy^3-6x^2+10xy\)
\(=2x.y^3-2x.3x+2x.5y\)
\(=2x\left(y^3-3x+5y\right)\)
\(=2x[y\left(y^2-5\right)-3x]\)
\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}=3^{101}-3\)Ta có: \(2A+x=3^{2020}\)
\(\Rightarrow3^{101}-3+x=3^{2020}\)
\(\Rightarrow x=3^{2020}+3-3^{101}\)