Cho hai số tự nhiên a và b :
Chứng minh rằng \(a^2+b^2\) chia hết cho a.b khi và chỉ khi a = b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì số chính phương chia 3 dư 1 hoặc 0
Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là
(0;0) (0;1) (1;0) (1;1)
Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Ta xét tổng: A= 3( a+ 4b)+( 10a+ b)
A= 3a+ 12b+ 10a+ b.
A= 13a+ 13b\(⋮\) 13.
=> A\(⋮\) 13.
Vì 10a+ b\(⋮\) 13.
=> 3( a+ 4b)\(⋮\) 13.
Mà 3 không\(⋮\) 13.
=> a+ 4b\(⋮\) 13.
Vậy a+ 4b\(⋮\) 13 khi và chỉ khi 10a+ b\(⋮\) 13.
Đặt A= a + 4b
B= 10a + b
Ta có: 10A- B= 10(a +4b) - (10a +b)
= 10a + 40b - 10a - b
= (10a - 10a) + (40b - b)
= 0 + 39b
= 39b
= 13 . 3b chia hết cho 13
=> 10A - B chia hết cho 13
- Nếu A chia hết cho 13 =>10A chia hết cho 13 => B chia hết cho 13
hay a + 4b chia hết cho 13 =>10a + b chia hết cho 13
- Nếu B chia hết cho 13 => 10A chia hết cho 13 mà (10, 13) = 1 => A chia hết cho 13
hay 10a + b chia hết cho 13 => a + 4b chia hết cho 13
Vậy a + 4b chia hết cho 13 <=> 10a + b chia hết cho 13.
Chúc bạn học tốt!
a2 + b2 chia hết cho ab
=>a2 + b2 chia hết cho a =>b chia hết cho a (1)
Và a2 + b2 chia hết cho b => a chia hết cho b (2)
Tử 1 và 2 => a =b