a+b+c=3 ; a,b,c>0 CM:
\(\dfrac{a}{1+b^2}\) + \(\dfrac{b}{1+c^2}\) + \(\dfrac{c}{1+a^2}\) \(\ge\) \(\dfrac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)\cdot c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
a,Đặt a+b-c=x, c+a-b=y, b+c-a=z
=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c
Ta có hằng đẳng thức:
(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)
=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3
=3(x+y)(x+z)(y+z)
=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)
=3.2a.2b.2c
=24abc
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
a. Câu hỏi của Nhàn Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Lời giải:
Ta có:
\(\text{VT}=\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)
\(\Leftrightarrow \text{VT}=a-\frac{ab^2}{b^2+1}+b-\frac{bc^2}{c^2+1}+c-\frac{ca^2}{a^2+1}\)
\(\Leftrightarrow \text{VT}=3-\left(\frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\right)\)
Áp dụng BĐT AM-GM: \(b^2+1\geq 2b,c^2+1\geq 2c, a^2+1\geq 2a\)
\(\Rightarrow \frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\leq \frac{ab+bc+ac}{2}\)
Mà \(ab+bc+ac\leq \frac{1}{3}(a+b+c)^2=3\Rightarrow \frac{ab^2}{b^2+1}+\frac{bc^2}{c^2+1}+\frac{ca^2}{a^2+1}\leq \frac{3}{2}\)
\(\Rightarrow \text{VT}\geq 3-\frac{3}{2}\Leftrightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)