Cho hai số a,b>0 thõa mãn \(a^2+b^2=a+b\)
Tìm GTLN: \(s=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(\left(a+b^2\right)\left(a+1\right)\ge\left(a+b\right)^2\Rightarrow\dfrac{1}{a+b^2}\le\dfrac{a+1}{\left(a+b\right)^2}\)
Tương tự: \(\dfrac{1}{b+a^2}\le\dfrac{b+1}{\left(a+b\right)^2}\)
\(\Rightarrow M\le\dfrac{a+b+2}{\left(a+b\right)^2}=\dfrac{2}{\left(a+b\right)^2}+\dfrac{1}{a+b}=\dfrac{2}{\left(a+b\right)^2}+\dfrac{1}{a+b}-1+1\)
\(\Rightarrow M\le\left(\dfrac{2}{a+b}-1\right)\left(\dfrac{1}{a+b}+1\right)+1=\left(\dfrac{2-a-b}{a+b}\right)\left(\dfrac{1}{a+b}+1\right)+1\le1\)
\(M_{max}=1\) khi \(a=b=1\)
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Nè Phan Linh Nhi, mk ko hỉu cái chỗ: a+b\(\le2\). Bn có thể giải thích chi tiết cho mk đc ko??
Ta có \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{\sqrt{ab}}=4\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=4-\dfrac{2}{\sqrt{ab}}\)
Khi đó P = \(\dfrac{1}{\sqrt{ab}}\left(4-\dfrac{2}{\sqrt{ab}}\right)=-2\left(\dfrac{1}{\sqrt{ab}}-1\right)^2+2\le2\)
Dấu "=" khi a = b = 1
Ta có: \(P=ab+\dfrac{4}{ab}+4\ge2\sqrt{ab.\dfrac{4}{ab}+4}=8\)
Dấu '=' xảy ra <=> \(\left\{{}\begin{matrix}ab=2\\1\le a,b\le2\end{matrix}\right.\)
Lại có: \(1\le a\le2,1\le b\le2\)
\(\Rightarrow1\le ab\le4\Leftrightarrow\left(ab-1\right)\left(ab-4\right)\le0\Leftrightarrow\left(ab\right)^2\le5ab-4\)
\(\Rightarrow P=\dfrac{\left(ab\right)^2+4ab+4}{ab}\le\dfrac{5ab-4+4ab+4}{ab}=9\)
Dấu '=' xảy ra <=> \(\left[{}\begin{matrix}ab=1\\ab=4\end{matrix}\right.\) và \(1\le a,b\le2\) \(\Leftrightarrow\left[{}\begin{matrix}a=b=2\\a=b=1\end{matrix}\right.\)
Vậy \(Min_P=8\Leftrightarrow ab=2;1\le a,b\le2\)
\(Max_P=9\Leftrightarrow\left[{}\begin{matrix}a=b=1\\a=b=2\end{matrix}\right.\)
\(\dfrac{1}{1+a}=1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\)
Tương tự:
\(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\) ; \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+c\right)}}\)
Nhân vế với vế:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
\(N_{max}=\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{2}\)
thật ra là có 1 bài rút gọn nx, nhưng mik làm đc rồi. bài rút gọn đó ra A=-1, đây là ý tiếp theo của bài đó :<
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
Lời giải:
Áp dụng BĐT AM-GM: \(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\)
\(a+b=a^2+b^2\geq \frac{(a+b)^2}{2}\Rightarrow 2(a+b)\geq (a+b)^2\)
Do đó mà \(a+b\leq 2\)
Có:
\(S=\frac{a}{a+1}+\frac{b}{b+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a+1}+\frac{1}{b+1}\geq \frac{4}{a+b+2}\geq \frac{4}{2+2}=1\) do \(a+b\leq 2\)
Do đó: \(S\leq 2-1\Leftrightarrow S\leq 1\)
Vậy \(S_{\max}=1\Leftrightarrow a=b=1\)
\(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}=\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}\)
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}\ge\dfrac{\left(a+b\right)^2}{a^2+b^2+a+b}=\dfrac{\left(a+b\right)^2}{2\left(a^2+b^2\right)}\)
Bởi vì:\(a^2+b^2=a+b\Rightarrow a^2+b^2+a+b=a^2+b^2+a^2+b^2=2\left(a^2+b^2\right)\)
Mặt khác, theo Bunyakovsky, ta có:
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Do đó: \(\dfrac{\left(a+b\right)^2}{2\left(a^2+b^2\right)}\le\dfrac{\left(a+b\right)^2}{\left(a+b\right)^2}=1\)
Vậy: \(Max_S=1\Leftrightarrow a=b=1\)