Cho tg ABC có góc A nhọn. Kẻ đường cao BK,CH.
a) CM: góc ABK=góc ACH
b) Trên tia đối của tia BK với CH lll E, F sao cho BE=AC, CF=AB. C/m .
c) Chứng minh tam giác AEF vuông cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
a: Xét ΔABK vuông tại K và ΔACH vuông tại H có
\(\widehat{HAC}\) chung
Do đó: ΔABK\(\sim\)ΔACH
Suy ra: \(\widehat{ABK}=\widehat{ACH}\)