Vẽ lưu đồ thuật toán: S = x1 + x2 + x3 + ... + xn
Help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Nhập n và nhập dãy số
Bước 2: tb←0; i←1;
Bước 3: tb←tb+x[i];
Bước 4: i←i+1;
Bước 5: Nếu i<=n thì quay lại bước 3 và bước 4
Bước 6: Xuất tb/n;
Bước 7: Kết thúc
Bài 1 :
8x - 0,4 = 7,8*x + 402
8x - 7,8*x = 402 + 0,4
0,2*x = 402,04
x= 402,04 : 0,2
x = 2012
Bài 2
Theo bài ra , số học sinh lớp 6A bằng 1/2 tổng số học sinh hai lớp 6B và 6C
=> Số học sinh lớp 6A bằng 1/3 số học sinh của cả 3 lớp
Số học sinh lớp 6A là :
120 x 1/3 = 40 học sinh
Tổng số học sinh lớp 6B và 6C là :
120 - 40 = 80 học sinh
Số học sinh lớp 6B là :
( 80 - 6 ) : 2 = 37 học sinh
Số học sinh lớp 6C là :
37 + 6 = 43 học sinh
Ta có:
x1 + x2 + x3 + ... + x2008 + x2009 + x2010
= (x1 + x2 + x3) + ... + (x2008 + x2009 + x2010)
= 1 + 1 + 1 + ... + 1(670 số 1)
= 670
\(\Rightarrow\) x1 + x2 + x3 + ... + x2009 + x2010 + x2011 = 670 + x2011 = 0
\(\Rightarrow\) x2011 = -670
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
Lời giải:
Vì $x_i$ nhận giá trị $1$ hoặc $-1$ nên $x_ix_j$ nhận giá trị $1$ hoặc $-1$
Xét tổng $n$ số $x_1x_2,x_2x_3,...,x_nx_1$, mỗi số hạng đều nhận giá trị $1$ hoặc $-1$ nên để tổng đó bằng $0$ thì số số hạng $-1$ phải bằng số số hạng $1$. Mà có $n$ số hạng nên mỗi giá trị $1$ và $-1$ có $\frac{n}{2}$ số hạng
$\Rightarrow n$ chia hết cho $2$
Mặt khác:
\(1^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=x_1x_2.x_2x_3...x_nx_1=(x_1x_2..x_n)^2=1\) với mọi $x_i\in \left\{1;-1\right\}$
$\Rightarrow \frac{n}{2}$ chẵn
$\Rightarrow n$ chia hết cho $4$ (đpcm)
ck giúp mình với
Bài toán 3
a. 25 - y^2 = 8(x - 2009)
Ta có thể viết lại như sau:
y^2 - 8(x - 2009) + 25 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 2009 và y = 0.
b. x^3 y = x y^3 + 1997
Ta có thể viết lại như sau:
x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997Ta có thể thấy rằng x và y phải có giá trị đối nhau.
Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = y = 998.
c. x + y + 9 = xy - 7
Ta có thể viết lại như sau:
x - xy + y + 16 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 8 và y = 12.
Bài toán 4
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 2, ta có:
x1.x2 + x2.x3 = 0Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.
Bước đệm
Giả sử rằng khi n = k, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Bước kết luận
Xét số tự nhiên n = k + 1.
Ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1Theo giả thuyết, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.
Như vậy, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 share
@phynit; @Toshiro Kiyoshi; @Tú Quyên; @Aki Tsuki; @Ngân Hải; @Hà Ngân Hà; @Võ Đông Anh Tuấn;
Em còn không hiểu cái đề @@