tìm các số x,y,z biết \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}và\) x-y+z=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Do đó: x=-70; y=-135; z=-84
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x10=y15=z12=x−y+z10−15+12=−497=−7x10=y15=z12=x−y+z10−15+12=−497=−7
Do đó: x=-70; y=-135; z=-84
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
Bài 2:
\(a,\dfrac{2}{x}=\dfrac{x}{8}\\ \Rightarrow x.x=8.2\\ \Rightarrow x^2=16\\ \Rightarrow x=\pm4\)
\(b,\dfrac{2x-9}{240}=\dfrac{39}{80}\\ \Rightarrow80\left(2x-9\right)=240.39\\ \Rightarrow160x-720=9360\\ \Rightarrow160x=10080\\ \Rightarrow x=63\)
\(c,\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Rightarrow3\left(x-1\right)=8.9\\ \Rightarrow3\left(x-1\right)=72\\ \Rightarrow x-1=24\\ \Rightarrow x=25\)
\(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{3}{2}}=\dfrac{x-y}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=30\Rightarrow x=60\\\dfrac{y}{\dfrac{3}{2}}=30\Rightarrow y=45\\\dfrac{z}{\dfrac{4}{3}}=30\Rightarrow z=40\end{matrix}\right.\)
Bài 1:
Ta có: \(3x=2y\)
nên \(\dfrac{x}{2}=\dfrac{y}{3}\)
mà x+y=-15
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)
Vậy: (x,y)=(-6;-9)
Bài 2:
a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y-z=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)
Vậy: (x,y,z)=(40;30;50)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{11}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=11k\end{matrix}\right.\)\(\Rightarrow xyz=528k^3=-528\Rightarrow k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.\left(-1\right)=-8\\y=6.\left(-1\right)=-6\\z=11.\left(-1\right)=-11\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
\(\dfrac{x}{-2}=\dfrac{y}{3}\)
=>\(\dfrac{x}{-4}=\dfrac{y}{6}\)
mà \(\dfrac{y}{6}=\dfrac{z}{2}\)
nên \(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}\)
mà x+y+z=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-4}=\dfrac{y}{6}=\dfrac{z}{2}=\dfrac{x+y+z}{-4+6+2}=\dfrac{28}{4}=7\)
=>\(x=-4\cdot7=-28;y=6\cdot7=42;z=2\cdot7=14\)
Ta có :
\(x-y+z=8\)
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=2\Leftrightarrow x=4\\\dfrac{y}{4}=2\Leftrightarrow y=8\\\dfrac{z}{6}=2\Leftrightarrow z=12\end{matrix}\right.\)
Vậy ..