K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left[1-3xy\right]-3\left[1-2xy\right]\)

\(=2-6xy-3+6xy=-1\)

b: \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-48x^2+12x-1-\left(64x^3+12x-48x^2-9\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

=8

\(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(x^2-xy+y^2\right)-3\left(1-2xy\right)\)

\(=2x^2-2xy+2y^2-3+6xy\)

\(=2x^2+4xy+2y^2-3\)

Bạn xem lại đề bài b nhé.

undefined

30 tháng 7 2021

a) \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-3\left[\left(x+y\right)^2-2xy\right]\)

\(=2\left(1-3xy\right)-3\left(1-2xy\right)\)

\(=2-6xy-3+6xy=-1\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x,y\)

b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

 \(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

\(\Rightarrow\) Giá trị của biểu thức không phụ thuộc vào biến \(x\)

 

a: Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3+27-8x^3+2\)

=29

b: Ta có: \(B=\left(64x^3-1\right)-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-1-64x^3-12x-48x^2+9\)

\(=-12x+8\)

c: Ta có: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2+xy+y^2\right)-3\left(-2xy\right)\)

\(=2x^2+2xy+2y^2+6xy\)

\(=2x^2+8xy+2y^2\)

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

21 tháng 7 2021

`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`

`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`

`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`

`=-x^3+18x^2y-18xy^2+2` (??????)

 

2:

a: =>(x-9)(x-1)=0

=>x=9 hoặc x=1

b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0

=>(x+4)(x^2-4x+16+x-16)=0

=>(x+4)(x^2-3x)=0

=>x(x-3)(x+4)=0

=>x=0;x=3;x=-4

28 tháng 7 2023

 bài 2 :

a: =>(x-9)(x-1)=0

=>x=9 hoặc x=1

b: =>(x+4)(x^2-4x+16)+(x+4)(x-16)=0

=>(x+4)(x^2-4x+16+x-16)=0

=>(x+4)(x^2-3x)=0

=>x(x-3)(x+4)=0

=>x=0;x=3;x=-4

hihi

3 tháng 12 2021

\(A=\left(2x+y\right)^2-4x\left(x+y\right)-\left(y-1\right)\left(y+1\right)\)

\(\Rightarrow A=4x^2+4xy+y^2-4x^2-4xy-y^2+1\)

\(\Rightarrow A=1\)

Vậy A không phụ thuộc vào biến