b) Cho phương trình \(\left(m^2+1\right)x^2+2\left(m^2+1\right)x-m=0\left(1\right)\) gọi x1,x2
là nghiệm của phương trình (1). Tìm
giá trị lớn nhất biểu thức T= \(x_1^2+x_2^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thảo luận 1
đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2
Thảo luận 2
A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2
\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)
\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)
\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)
=> pt luôn có 2 no pb x1;x2
ad đl viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)
ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)
\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)
Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)
\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)
\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)
\(=\left(x_1+x_2\right)^3+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)
\(=8\left(5m-2m^2\right)\)
\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)
\(P_{max}=16\) khi \(m=2\)
\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)
\(P_{min}=-144\) khi \(m=-2\)
\(\Delta'=\left(m-1\right)^2-2\left(m^2-1\right)=-m^2-2m+3>0\)
\(\Rightarrow-3< m< 1\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(m-1\right)\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)
\(P=\left(x_1-x_2\right)^2=x_1^2+x_2^2-2x_1x_2\)
\(P=x_1^2+x_2^2+2x_1x_2-4x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(P=\left(m-1\right)^2-4\left(\dfrac{m^2-1}{2}\right)\)
\(P=-m^2-2m+3=-\left(m^2+2m+1\right)+4\)
\(P=-\left(m+1\right)^2+4\le4\)
\(P_{max}=4\) khi \(m+1=0\Leftrightarrow m=-1\) (thỏa mãn)
b) phương trình có 2 nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)
\(\Leftrightarrow-4m+4\ge0\)
\(\Leftrightarrow m\le1\)
Ta có: \(x_1^2+x_1x_2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)
\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)
\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)
\(\Leftrightarrow4m^2-10m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)
\(\Delta=4m^2-4m+1-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Do đó pt luôn có nghiệm
Theo định lí Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)
Lại có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4\)
\(A=4m^2-8m+5\)
\(A=4\left(m-1\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\) m=1
Tick hộ nha 😘
pt có nghiệm \(< =>\Delta\ge0\)
\(< =>[-\left(2m-1\right)]^2-4\left(2m-2\right)\ge0\)
\(< =>4m^2-4m+1-8m+8\ge0\)
\(< =>4m^2-12m+9\ge0\)
\(< =>4\left(m^2-3m+\dfrac{9}{4}\right)\ge0\)
\(=>m^2-2.\dfrac{3}{2}m+\dfrac{9}{4}\ge0< =>\left(m-\dfrac{2}{3}\right)^2\ge0\)(luôn đúng)
=>pt luôn có 2 nghiệm
theo vi ét \(=>\left\{{}\begin{matrix}x1+x2=2m-1\\x1x2=2m-2\end{matrix}\right.\)
\(A=\left(x1+x2\right)^2-2x1x2=\left(2m-1\right)^2-2\left(2m-2\right)\)
\(A=4m^2-4m+1-4m+4=4m^2+5\ge5\)
dấu"=" xảy ra<=>m=0
\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m
Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)
\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)
\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )
Lời giải:
$\Delta'=(m^2+1)^2+m(m^2+1)=(m^2+1)(m^2+m+1)>0$ với mọi $m$ nên pt luôn có 2 nghiệm phân biệt với mọi $m$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=\frac{-m}{m^2+1}\end{matrix}\right.\)
Khi đó:
\(T=x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(-2)^2+\frac{2m}{m^2+1}=4+\frac{2m}{m^2+1}\)
\(=5+\frac{2m}{m^2+1}-1=5+\frac{2m-m^2-1}{m^2+1}=5-\frac{(m-1)^2}{m^2+1}\leq 5\)
Vậy $T_{\max}=5$ khi $m=1$