e xin nhờ các thầy cô vào các bạn trên hoc24h giúp đỡ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cosi dạng \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\cdot\dfrac{1}{4}\ge\dfrac{4}{a+b}\cdot\dfrac{1}{4}\\ \Leftrightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Leftrightarrow\dfrac{a}{2a+b+c}=\dfrac{a}{a+b+a+c}\le\dfrac{a}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{a+2b+c}\le\dfrac{b}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{c}{a+b+2c}\le\dfrac{c}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\\ \Leftrightarrow VT\le\dfrac{1}{4}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow a=b=c\)
-Vì bài dài quá nên mình nói tóm tắt:
a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).
-Suy ra: \(BM=CN\) .
-Suy ra 2 điều:
+\(QM^2-BQ^2=MN^2-MC^2\)
+\(QM+BQ=MN+MC\) (1)
\(QM^2-BQ^2=MN^2-MC^2\)
\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)
\(\Rightarrow QM-BQ=MN-MC\) (2)
-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).
\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).
\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)
Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ
-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN
.......
Lời giải:
Gọi số công nhân mỗi đội lần lượt là $a,b,c$. Vì số công nhân tỉ lệ nghịch với số
ngày làm nên $4a=6b=8c=\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{8}}$
Áp dụng TCDTSBN:
$\frac{a}{\frac{1}{4}}=\frac{b}{\frac{1}{6}}=\frac{c}{\frac{1}{8}}=\frac{a-b}{\frac{1}{4}-\frac{1}{6}}=\frac{4}{\frac{1}{12}}=48$
$\Rightarrow a=48.\frac{1}{4}=12; b=48.\frac{1}{6}=8; c=48.\frac{1}{8}=6$
Từ GT \(\Leftrightarrow a>0;bc>0\)
\(BĐT\Leftrightarrow\dfrac{a^2}{3}+\left(b+c\right)^2-3bc-a\left(b+c\right)\ge0\\ \Leftrightarrow\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\ge0\)
Vì \(a^3>36\) nên
\(\dfrac{1}{3}+\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}-\dfrac{3}{a^2}\\ >\left(\dfrac{b+c}{a}\right)^2-\dfrac{b+c}{a}+\dfrac{1}{4}=\left(\dfrac{b+c}{a}-\dfrac{1}{2}\right)^2\ge0\)
Đặt \(a=p^q+7q^p\)
Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)
Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ
\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ
TH1: \(p=2\Rightarrow a=2^q+7.q^2\)
- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)
- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)
\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)
TH2: \(q=2\Rightarrow a=p^2+7.2^p\)
- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)
- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu
Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!