Tính nhanh
A=1^2+2^2+3^2 +...+100^2
B=2^2+4^2+6^2 + ...+200^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = 1/2 - 1/2 + 1/3 -1/3 + 1/4 - 1/4 + 1/5 - 1/5 + 1/6
= 0 + 0 + 0 + 0 + 1/6
= 1/6
b) 2/3 + 2/4 - 2/4 + 2/5 - 2/5 + 2/6 - 2/6 + 2/7 - 2/7 + 28
= 2/3 + 28
= 86/3
[tick cho mik nha]
Bài 9:
a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)
\(=3xy-y^2\)
\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)
b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Bài 7:
a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)
b) \(93\cdot107=100^2-7^2=10000-49=9951\)
c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)
d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)
e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1=1\)
f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
\(A=\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\\ A=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}\)
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
tick cho tớ với
Bài 1:
a: \(\left(3x+2\right)^2-4=3x\left(3x+4\right)\)
Bài 2:
a: \(4x^2+4x+1\)
b: \(9x^2+9x+\dfrac{9}{4}\)
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+....+\frac{1}{200^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.100\right)^2}\)
\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{100^2}\)
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\right)=\frac{1}{4}.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{\frac{1}{4}A}=\frac{A}{\frac{A}{4}}=A.\frac{4}{A}=4\)