K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{1}=2\)

dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\a+b=4\end{cases}}\)

vậy \(MIN=2\)

Ta có: a/b+b/a=\(\frac{a^2+b^2}{ba}\)\(\frac{\left(a+b\right)^2}{ba}-2\)=16/ab-2

hay để a/b và b/a nhỏ nhất thì ba lớn nhất và khác 0 (rồi giờ bn tìm ba thôi, đừng bấm sai vì mình chưa ra kq nhé)

NV
20 tháng 7 2021

Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)

\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)

\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)

\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)

30 tháng 7 2021

Ta có: \(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}\) (BĐT Cauchy-Schwarz)

\(=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)

\(\Rightarrow A\ge\dfrac{4}{3}\Rightarrow A_{min}=\dfrac{4}{3}\) khi \(\dfrac{a}{a+4}=\dfrac{b}{b+4}\)

\(\Rightarrow ab+4a=ab+4b\Rightarrow a=b=2\)

NV
30 tháng 7 2021

\(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)

\(A_{min}=\dfrac{4}{3}\) khi \(a=b=2\)

NV
15 tháng 2 2022

\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)

\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)

\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)

\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)

27 tháng 1 2022

\(S=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{d^2+1}\)

\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

\(tương\) \(tự\) \(với:\dfrac{1}{b^2+1};\dfrac{1}{c^2+1};\dfrac{1}{d^2+1}\)

\(\Rightarrow S\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}+1-\dfrac{d}{2}=4-\left(\dfrac{a+b+c+d}{2}\right)=4-\dfrac{4}{2}=2\)

\(\Rightarrow min_S=2\Leftrightarrow a=b=c=d=1\)

AH
Akai Haruma
Giáo viên
2 tháng 10 2021

Lời giải:

Áp dụng BĐT AM-GM

$A=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{x}}\geq 2\sqrt[4]{\frac{1}{xy}}$

Cũng áp dụng AM-GM:

$4=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 4$

Do đó: $A\geq 2\sqrt[4]{\frac{1}{xy}}\geq 2\sqrt[4]{\frac{1}{4}}=\sqrt{2}$

Vậy $A_{\min}=\sqrt{2}$ khi $x=y=2$

 

10 tháng 12 2023

Theo đề bài, ta có: 

ab + ba = 132 

(a + b) x 11 = 132

a + b = 132 : 11

a + b = 12

a - b = 4

⇒ a = (12 +4 ) : 2 = 8;  b = 8 - 4 = 4

⇒ ab = 84

 

9 tháng 12 2023

Theo đề bài, ta có: 

ab + ba = 132 

(a + b) x 11 = 132

a + b = 132 : 11

a + b = 12

a - b = 4

⇒ a = (12 +4 ) : 2 = 8;  b = 8 - 4 = 4

⇒ ab = 84

NV
23 tháng 8 2021

\(M=2003\left(\dfrac{1}{a}+4a\right)+2016\left(\dfrac{1}{b}+b\right)-5012a-7518b\)

\(M=2003\left(\dfrac{1}{a}+4a\right)+2016\left(\dfrac{1}{b}+b\right)-2506\left(2a+3b\right)\)

\(M\ge2003.2\sqrt{\dfrac{4a}{a}}+2016.2\sqrt{\dfrac{b}{b}}-2506.4=2020\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};1\right)\)