K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

\(154\cdot10=1540\)

23 tháng 9 2018

154 x 10 = 1540

6 tháng 8 2021

Vì phân tử khối của A=160 đvC và có 3 nguyên tử O

  => mFe=160-3.16=102 (đvC)

 => có 2 nguyên tử Fe trong A

Ta có:PTK của B bằng 1,45 PTK của A

=> PTK của B là 160.1,45=232 (đvC)

Mà số nguyên tử Fe trong B bằng số nguyên tử O trong A

=> mO=232-3.56=64

=> có 4 nguyên tử O trong B

6 tháng 8 2021

Cảm ơn ạ

NV
24 tháng 1 2022

Chắc đề đúng là \(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...\)

- Với \(n=1\) đẳng thức đúng

- Giả sử đẳng thức cũng đúng với \(n=k>1\) hay:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}=\dfrac{k^2}{4k^2+1}\)

- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}+\dfrac{2k+1}{4+\left(2k+1\right)^4}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\)

Thật vậy, ta có:

\(\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2k-1}{4+\left(2k-1\right)^4}+\dfrac{2k+1}{4+\left(2k+1\right)^4}=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{4+\left(2k+1\right)^4}\)

\(=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(2k+1\right)^4+4\left(2k+1\right)^2+4-4\left(2k+1\right)^2}=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(4k^2+4k+3\right)^2-\left(4k+2\right)^2}\)

\(=\dfrac{k^2}{4k^2+1}+\dfrac{2k+1}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}=\dfrac{k^2\left(4k^2+8k+5\right)+2k+1}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}\)

\(=\dfrac{\left(k+1\right)^2\left(4k^2+1\right)}{\left(4k^2+1\right)\left(4k^2+8k+5\right)}=\dfrac{\left(k+1\right)^2}{4k^2+8k+5}=\dfrac{\left(k+1\right)^2}{4\left(k+1\right)^2+1}\) (đpcm)

25 tháng 8 2021

1 A

2 D

3 D

4 A

5 B

6 B

7 C

8 D

9 D

10 B

11 B

12 B

13 C

14 C

15 C

16 A

17 B

18 C

19 D

20 A

19 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1+x_2=-2\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=-2m\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-m\\x_2=2m-2+m=3m-2\end{matrix}\right.\)

\(x_1\cdot x_2=m^2-3m\)

\(\Leftrightarrow-3m^2+2m-m^2+3m=0\)

\(\Leftrightarrow-4m^2+5m=0\)

\(\Leftrightarrow m\left(4m-5\right)=0\)

=>m=0 hoặc m=5/4

15 tháng 10 2021

Bài 6:

ĐK: \(9a< \dfrac{4}{a}\Leftrightarrow a^2< \dfrac{4}{9}\Leftrightarrow-\dfrac{2}{3}< a< \dfrac{2}{3}\)

 

15 tháng 10 2021

Bài 7:

ĐK: \(a=\dfrac{4}{a}\Leftrightarrow a^2=4\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-2\end{matrix}\right.\)

23 tháng 1 2022

a, thay x=25 vào A ta có:

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}=\dfrac{\sqrt{25}}{\sqrt{25}-1}=\dfrac{5}{5-1}=\dfrac{5}{4}\)

b, \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{x\sqrt{x}-1}-\dfrac{2}{\sqrt{x}-1}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{\sqrt{x^3}-1}-\dfrac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}\left(\dfrac{3x+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{2x+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{\sqrt{x}-1}.\dfrac{3x+3-2x-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)^2\left(x+\sqrt{x}+1\right)}\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

 

23 tháng 1 2022

ô