Chứng minh:
\(\left(a_1+a_2+...+a_n\right)^2\le n\left(a_1^2+a^2_2+...+a^2_n\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a_1;a_2;...a_n\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}0\le a_1\le1\\0\le a_2\le1\\...\\0\le a_n\le1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\left(1-a_1\right)\ge0\\a_2\left(1-a_2\right)\ge0\\...\\a_n\left(1-a_n\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a_1\ge a_1^2\\a_2\ge a_2^2\\...\\a_n\ge a_n^2\end{matrix}\right.\)
\(\Rightarrow a_1^2+a_2^2+...+a_n^2\le a_1+a_2+...+a_n\)
Do đó ta chỉ cần chứng minh:
\(\left(1+a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)
\(\Leftrightarrow1+2\left(a_1+a_2+...+a_n\right)+\left(a_1+a_2+...+a_n\right)^2\ge4\left(a_1+a_2+...+a_n\right)\)
\(\Leftrightarrow\left(a_1+a_2+...+a_n\right)^2-2\left(a_1+a_2+...+a_n\right)+1\ge0\)
\(\Leftrightarrow\left(a_1+a_2+...+a_n-1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra tại \(\left(a_1,a_2,...,a_n\right)=\left(0,0,..,1\right)\) và các hoán vị
Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=k\)
=>\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{n-1}}{a_n}.\frac{a_n}{a_1}=k.k.....k.k\)
=>\(k^n=\frac{a_1.a_2.....a_{n-1}.a_n}{a_2.a_3.....a_n.a_1}\)
=>\(k^n=1=1^n\)
=>k=1
=>\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=1\)
=>\(a_1=a_2=...=a_n\)
\(=>\frac{a^2_1+a^2_2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}\)
=\(\frac{a^2_1+a^2_1+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}\)
=\(\frac{n.a^2_1}{\left(n.a_1\right)^2}=\frac{n.a_1^2}{n^2.a^2_1}=\frac{1}{n}\)
thế này dc ko
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+...+a_n+a_1}\Rightarrow a_1=a_2=...=a_n\)
\(\frac{a^1_2+a^2_2+...+a^2_n}{\left(a_1+a_2+...+a_n\right)}=\frac{na^2_1}{\left(na_1\right)^2}=\frac{1}{n}\)
Sửa đề: n \(\ge1\).
Với n =1, bất đẳng thức trở thành đẳng thức.
Với n =2, cần chứng minh: \(2\left(a_1^2+a_2^2\right)\ge\left(a_1+a_2\right)^2\Leftrightarrow\left(a_1-a_2\right)^2\ge0\) (đúng)
Giả sử nó đúng đến n = k, tức là ta có: \(k\left(a_1^2+a_2^2+...+a_k^2\right)\ge\left(a_1+a_2+...+a_k\right)^2\)
Hay là: \(\left(a_1^2+a_2^2+...+a_k^2\right)\ge\frac{\left(a_1+a_2+...+a_k\right)^2}{k}\)
Ta c/m nó đúng với n = k +1 or \(\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\ge\left(a_1+a_2+...+a_k+a_{k+1}\right)^2\)
Ta có: \(VT=\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\)
\(\ge\left(k+1\right)\left[\frac{\left(a_1+a_2+...+a_k\right)^2}{k}+\frac{a^2_{k+1}}{1}\right]\ge\frac{\left(k+1\right)\left(a_1+a_2+..+a_k+a_{k+1}\right)^2}{k+1}=VP\)
Vậy đpcm là đúng.
P/s: Chả biết đúng không, chưa check, đại khái hướng làm là dùng quy nạp.
Ta có: \(\left\{{}\begin{matrix}a_1^2+a_2^2\ge2a_1a_2\\a_1^2+a_3^2\ge2a_1a_3\\...................\\a_{n-1}^2+a_n^2\ge2a_{n-1}a_n\end{matrix}\right.\)
\(\Rightarrow\left(n-1\right)\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge2\left(a_1a_2+a_1a_3+...+a_{n-1}a_n\right)+\left(a_1^2+a_2^2+...+a_n^2\right)\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+...+a_n^2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
Áp dụng BĐT căn trung bình bình phương ta có:
\(\sqrt{\dfrac{a_1^2+a_2^2+....+a^2_n}{n}}\ge\dfrac{a_1+a_2+...+a_n}{n}\)
\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\left(\dfrac{a_1+a_2+...+a_n}{n}\right)^2\)
\(\Leftrightarrow\dfrac{a_1^2+a_2^2+....+a^2_n}{n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n^2}\)
\(\Leftrightarrow a_1^2+a_2^2+....+a^2_n\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{n}\)
\(\Leftrightarrow n\left(a_1^2+a_2^2+....+a^2_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
Khi \(a_1=a_2=...=a_n\)