Tìm \(a,b,c\in Z\) thỏa mãn
\(10a^2+20b^2+24ab+8a-24b+51\le10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa thiết đã cho có thể viết lại thành
(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1
Từ đó suy ra 0<a/2,b/2,c/2≤1.
Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.
Từ một BĐT cơ bản cosA+cosB+cosC≤3/2
ta có ngay a+b+c≤3
<=> a^2+b^2+c^2 =< 3^2 =< 9
ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)
\(\Rightarrow a^2-3a\le0\)
C/m tương tư ta đc: \(b^2-3b\le0\)
\(c^2-3c\le0\)
\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)
\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)