K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Đề sai nhá

21 tháng 8 2017

\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{90.93}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{90.93}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{90}-\dfrac{1}{93}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{93}\right)\)

\(=\dfrac{91}{558}\)

7 tháng 5 2021

3A=3/2.5+...+3/2018.2021

3A=1/2-1/5+1/5-...+1/2018-1/2021

3A=1/2-1/2021 sau tự tính A

8 tháng 5 2021

3A= 1/2- 1/5 + 1/5- 1/8+ 1/8 -1/11+...+ 1/2012- 1/2015 +1/2015-  1/2018-1/2021

 3A   =1/2 -1/2021 

3A    = 2019/ 4042

  => 2019/4042 : 3 = 673/4042      

Chúc bạn học tốt !!

3 tháng 5 2022

nhân 3 vào cả hai vế 

3 tháng 5 2022

xong tự tính

2 tháng 5 2022

\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{98}=\dfrac{49}{98}-\dfrac{1}{98}=\dfrac{48}{98}=\dfrac{24}{49}\)

2 tháng 5 2022

\(A=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\\ A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)=\dfrac{1}{3}\cdot\dfrac{24}{49}=\dfrac{8}{49}\)

5 tháng 9 2021

Đặt A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\)

\(3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{95.98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(3A=\dfrac{1}{2}-\dfrac{1}{98}\)

\(3A=\dfrac{24}{49}\Rightarrow A=\dfrac{8}{49}\)

5 tháng 9 2021

    \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}+\dfrac{1}{95.98}\)

\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\)

\(=\dfrac{1}{2}-\dfrac{1}{98}\)

\(=\dfrac{24}{49}\)

26 tháng 3 2022

\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{2}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{92}+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\)

\(A=\dfrac{1}{2}-\dfrac{1}{98}\)

\(A=\dfrac{49}{98}-\dfrac{1}{98}\)

\(A=\dfrac{48}{98}\)

\(A=\dfrac{24}{49}\)

26 tháng 3 2022

Giải thích các bước giải:

A =1/2.5 + 1/5.8 + 1/8.11 + … +1/92.95 + 1/95.98

=1/3 . (1/2-1/5+1/5-1/8+1/8-1/11+…+1/92-1/95+1/95-1/98)

=1/3 . (1/2 – 1/98 )

=1/3 . 24/49

=8/49`

vậy `A=8/49`

24 tháng 1 2022

\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{y\left(y+3\right)}=\dfrac{98}{1545}\)

\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{y\left(y+3\right)}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{y}-\dfrac{1}{y+3}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{y+3}{5\left(y+3\right)}-\dfrac{5}{5\left(y+3\right)}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{y+3-5}{5\left(y+3\right)}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{y-2}{5\left(y+3\right)}=\dfrac{98}{515}\)

\(\Leftrightarrow515\left(y-2\right)=98.5\left(y+3\right)\)

\(\Leftrightarrow515y-1030=490y+1470\)

\(\Leftrightarrow25y-2500=0\\ \Leftrightarrow25y=2500\\ \Leftrightarrow y=100\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{y+3}\right)=\dfrac{98}{1545}\)

\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)

\(\Leftrightarrow\dfrac{1}{y+3}=\dfrac{1}{103}\)

hay x=100

16 tháng 4 2021

đề thiếu nhé

16 tháng 4 2021

Ta có: \(\dfrac{k}{x.\left(x+k\right)}=\dfrac{x+k-x}{x.\left(x+k\right)}=\dfrac{1}{x}-\dfrac{1}{x+k}\)

nên áp dụng ta có:

\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\)

\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\)

\(=\dfrac{1}{5}-\dfrac{1}{x+3}\)

Nên $\dfrac{1}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right)=\dfrac{1}{3}.(\dfrac{1}{5}-\dfrac{1}{x+3})$
Đến đây là làm được rồi nha

1 tháng 4 2023

\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)

\(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)

\(=\dfrac{1}{2}-\dfrac{1}{17}\)

\(=\dfrac{15}{34}\)

Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)

5 tháng 7 2018

\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Rightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

vậy \(x=305\)

5 tháng 7 2018

thanksvui