K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}\right)=\left(x+1\right)\left(\dfrac{1}{14}+\dfrac{1}{15}\right)\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

20 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}=\dfrac{x+1}{14}+\dfrac{x+1}{15}\)

<=> \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}+\dfrac{x+1}{13}-\dfrac{x+1}{14}-\dfrac{x+1}{15}=0\)

<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{15}\right)=0\)

Do: \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}-\dfrac{1}{14}-\dfrac{1}{14}>0\) nên x + 1 = 0

Vậy x = -1

5 tháng 7 2023

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)\(\left(x+1\right)\times\dfrac{1}{10}+\left(x+1\right)\times\dfrac{1}{11}+\left(x+1\right)\times\dfrac{1}{12}-\left(x+1\right)\times\dfrac{1}{13}-\left(x+1\right)\times\dfrac{1}{14}=0\)

\(\left(x+1\right)\times\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\) 

 => \(x+1=0\)

             \(x=0-1\)

             \(x=-1\)

5 tháng 7 2023

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\\ \Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\\ \Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\\ \Rightarrow x+1=0\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\\ \Rightarrow x=-1\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

$\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}$

$\Rightarrow (x+1)(\frac{1}{10}+\frac{1}{11}+\frac{1}{12})=(x+1)(\frac{1}{13}+\frac{1}{14})$

$\Rightarrow (x+1)(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14})=0$

Hiển nhiên $\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0$ 

$\Rightarrow x+1=0$

$\Rightarrow x=-1$

12 tháng 6 2017

đề kiểu j vậy, VP đâu

12 tháng 6 2017

V~ cả đề

25 tháng 3 2022

\(\dfrac{1}{5}+\dfrac{2}{11}< \dfrac{x}{55}< \dfrac{2}{5}+\dfrac{1}{5}\)

\(\dfrac{11+10}{55}< \dfrac{x}{55}< \dfrac{3}{5}\)

\(\dfrac{21}{55}< \dfrac{x}{55}< \dfrac{33}{55}\)

Vậy \(x\in\left\{22;23;24;...\right\}\)

 

25 tháng 3 2022

\(\dfrac{????????}{????????????}\)

4 tháng 3 2018

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

<=>(x+1)(1/10+1/11+1/12-1/13-1/14)=0

vì 1/10+1/11+1/12-1/13-1/14 khác 0 nên x+1=0<=>x=-1

vậy.........

2 tháng 8 2017

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

Dễ thấy: \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))

Bài 2:

a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)

\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)

\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)

 

18 tháng 9 2021

Bài 1:

a) \(\left|3x-5\right|=4\)  (1)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)    \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)           \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)

\(\Leftrightarrow x=-2004\)

16 tháng 6 2018

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

=> x+1=0

<=> x=-1

b) \(\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

<=> \(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

đến đây tương tự a

16 tháng 6 2018

a) Ta có:

\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\left(Vì:\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)

\(\Leftrightarrow x=-1\)

Vậy....

b)Sửa lại đề nha

Ta có:

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

Lý giải tương tự câu a và kết luận nha

Giải:

\(9-3\times\left(x-9\right)=6\) 

      \(3\times\left(x-9\right)=9-6\) 

      \(3\times\left(x-9\right)=3\) 

               \(x-9=3:3\) 

               \(x-9=1\) 

                     \(x=1+9\) 

                     \(x=10\) 

\(4+6\times\left(x+1\right)=70\) 

      \(6\times\left(x+1\right)=70-4\) 

      \(6\times\left(x+1\right)=66\) 

               \(x+1=66:6\) 

               \(x+1=11\) 

                     \(x=11-1\) 

                     \(x=10\) 

\(\dfrac{x}{13}+\dfrac{15}{26}=\dfrac{46}{52}\) 

         \(\dfrac{x}{13}=\dfrac{23}{26}-\dfrac{15}{26}\) 

         \(\dfrac{x}{13}=\dfrac{4}{13}\) 

\(\Rightarrow x=4\) 

\(\dfrac{11}{14}-\dfrac{3}{x}=\dfrac{5}{14}\) 

         \(\dfrac{3}{x}=\dfrac{11}{14}-\dfrac{5}{14}\) 

         \(\dfrac{3}{x}=\dfrac{3}{7}\) 

\(\Rightarrow x=7\) 

\(5\times\left(3+7\times x\right)=40\) 

         \(3+7\times x=40:5\) 

         \(3+7\times x=8\) 

                \(7\times x=8-3\) 

                \(7\times x=5\) 

                      \(x=5:7\) 

                      \(x=\dfrac{5}{7}\) 

\(x\times6+12:3=120\) 

       \(x\times6+4=120\) 

             \(x\times6=120-4\) 

             \(x\times6=116\) 

                   \(x=116:6\) 

                   \(x=\dfrac{58}{3}\) 

\(x\times3,7+x\times6,3=120\) 

    \(x\times\left(3,7+6,3\right)=120\) 

                  \(x\times10=120\) 

                           \(x=120:10\) 

                           \(x=12\) 

\(\left(15\times24-x\right):0,25=100:\dfrac{1}{4}\) 

      \(\left(360-x\right):0,25=400\) 

                   \(360-x=400.0,25\) 

                   \(360-x=100\) 

                             \(x=360-100\) 

                             \(x=260\) 

\(71+65\times4=\dfrac{x+140}{x}+260\) 

\(\left(x+140\right):x+260=71+260\) 

\(x:x+140:x+260=331\) 

    \(1+140:x+260=331\) 

                    \(140:x=331-1-260\) 

                    \(140:x=70\) 

                             \(x=140:70\) 

                             \(x=2\) 

\(\left(x+1\right)+\left(x+4\right)+\left(x+7\right)+...+\left(x+28\right)=155\) 

                      \(10\times x+\left(1+4+7+...+28\right)=155\)

Số số hạng \(\left(1+4+7+...+28\right)\) :

         \(\left(28-1\right):3+1=10\) 

Tổng dãy \(\left(1+4+7+...+28\right)\) :

         \(\left(1+28\right).10:2=145\) 

\(\Rightarrow10\times x+145=155\) 

               \(10\times x=155-145\) 

               \(10\times x=10\) 

                       \(x=10:10\) 

                       \(x=1\) 

Đều theo cách lớp 5 nha em!