K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Áp dụng BĐT bu - nhi -a cốp - xki 

ta có \(B^2=\left(1.\sqrt{2x-3}+1.\sqrt{x-1}+1.\sqrt{7-3x}\right)^2\le\left(1^2+1^2+1^2\right)\left(2x-3+x-1+7-3x\right)\)

       <=> \(b^2\le3.3=9\Rightarrow B\le3\)

Dấu '=' xảy ra khi x = 2 

9 tháng 12 2017

lớp 10 học trường mô đây ?

16 tháng 7 2016

a) 1

b) \(2\sqrt{x-2}+\sqrt{x+2}\)

c)câu này để bạn tự làm nhé

NV
9 tháng 3 2020

a/ ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}-1+\sqrt{x+4}-2>0\)

\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}+\frac{x}{\sqrt{x+4}+2}>0\)

\(\Leftrightarrow x>0\)

b/

Chắc bạn ghi nhầm đề, thấy đề hơi kì lạ

c/ ĐKXĐ: \(\left[{}\begin{matrix}-\frac{3}{2}\le x\le\frac{3-\sqrt{57}}{8}\\x\ge\frac{3+\sqrt{57}}{8}\end{matrix}\right.\)

\(\Leftrightarrow2x+3>4x^2-3x-3\)

\(\Leftrightarrow4x^2-5x-6< 0\) \(\Rightarrow-\frac{3}{4}< x< 2\)

Kết hợp ĐKXĐ ta được nghiệm của BPT: \(\left[{}\begin{matrix}-\frac{3}{4}< x\le\frac{3-\sqrt{57}}{8}\\\frac{3+\sqrt{57}}{8}\le x< 2\end{matrix}\right.\)

d/

\(\Leftrightarrow x^2+5x+28-5\sqrt{x^2+5x+28}-24< 0\)

Đặt \(\sqrt{x^2+5x+28}=t>0\)

\(\Leftrightarrow t^2-5t-24< 0\) \(\Rightarrow-3< t< 8\)

\(\Rightarrow t< 8\Rightarrow\sqrt{x^2+5x+28}< 8\)

\(\Leftrightarrow x^2+5x-36< 0\Rightarrow-9< x< 4\)

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

NV
5 tháng 7 2020

1/

\(B=\frac{1}{\sqrt{2}}\left(\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\right)\)

\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}+1-\sqrt{7}+1\right)=\sqrt{2}\)

\(\Rightarrow B>1\)

\(\left\{{}\begin{matrix}\sqrt[3]{4+\sqrt{7}}< \sqrt[3]{4+\sqrt{16}}=2\\\sqrt[3]{4-\sqrt{7}}>\sqrt[3]{4-\sqrt{9}}=1\end{matrix}\right.\)

\(\Rightarrow A=\sqrt[4]{4+\sqrt{7}}-\sqrt[3]{4-\sqrt{7}}< 2-1=1\)

\(\Rightarrow A< B\)

2/ ĐKXĐ: \(x\ge-3\)

Đặt \(\sqrt{x+3}=a\ge0\) ta được:

\(2x^2+a^2=3ax\Leftrightarrow2x^2-3ax+a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\2x=a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+3}\\2x=\sqrt{x+3}\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+3\\4x^2=x+3\end{matrix}\right.\) \(\Leftrightarrow...\)

5 tháng 7 2020

Từ chỗ \(\sqrt[3]{4-\sqrt{7}}>1\Rightarrow-\sqrt[3]{4-\sqrt{7}}< -1\) rồi thay vào thì đúng hơn nhỉ :)

(A < 3 < 1 = B)

6 tháng 8 2016

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\) 

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)