CM là số vô tỉ :\(\sqrt[]{2}\) +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
căn 2 là svt , căn 3 là svt
=>căn2 - căn 3 là số vô tỉ
=> căn 2 - căn 3 + 2 là số vô tỉ
có gì ko hiểu thì hỏi riêng mình nha
a) Bằng phản chứng giả sử \(\sqrt{2}\)là số hữu tỉ
---> Đặt \(\sqrt{2}=\frac{a}{b}\)với ƯCLN(a,b)=1 (tức là a/b tối giản), a,b>0
\(\Rightarrow b\sqrt{2}=a\Rightarrow2b^2=a^2\Rightarrow a^2\)là số chẵn \(\Rightarrow a\)là số chẵn
Đặt \(a=2k\Rightarrow b\sqrt{2}=2k\Rightarrow2b^2=4k^2\Rightarrow b^2=2k^2,k\inℕ\)
\(\Rightarrow b^2\)là số chẵn\(\Rightarrow b\)là số chẵn
Vậy \(2\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết--->đpcm
b) Bằng phản chứng giả sử \(3\sqrt{3}-1\)là số hữu tỉ
---> Đặt \(3\sqrt{3}-1=\frac{a}{b}\)với ƯCLN(a,b)=1 và a,b>0
\(\Rightarrow3b\sqrt{3}=a+b\Rightarrow27b^2=\left(a+b\right)^2\Rightarrow\left(a+b\right)^2⋮9\Rightarrow a+b⋮3\)
Đặt \(a+b=3k,k\inℕ\Rightarrow a=3k-b\Rightarrow\frac{3k-b}{b}=3\sqrt{3}-1\Rightarrow\frac{3k}{b}=3\sqrt{3}\)
\(\Rightarrow k^2=3b^2\Rightarrow k^2⋮3\Rightarrow k⋮3\)---> Đặt \(k=3l,l\inℕ\Rightarrow a=9l-b\Rightarrow\frac{9l-b}{b}=3\sqrt{3}-1\Rightarrow\frac{9l}{b}=3\sqrt{3}\)
\(\Rightarrow b^2=3l^2\Rightarrow b^2⋮3\Rightarrow b⋮3\)
\(\Rightarrow3\inƯC\left(a,b\right)\RightarrowƯCLN\left(a,b\right)\ne1\)---> Mâu thuẫn giả thiết---> đpcm
(Bài dài quá, giải mệt vler !!)
bài này đơn giản thôi
ta dùng phương pháp phản chứng để giải
giả sử căn7 không phải là số vô tỉ => căn 7 là số hữu tỉ
=> căn7 =a/b (với a, b là hai số nguyên tố cùng nhau) (vì căn 7 là số hữu tỉ nên có thể viết dưới dạng a/b)
=> a^2/b^2=7
=> a^2 =7b^2
vì a, b là hai so nguyen to cung nhau nên để a^2=7b^2 thì a^2 phải chia het cho 7
ma 7 la so nguyen tố => a chia het cho 7 => a có dạng a=7k
ta lại có: a^2=7b^2 => 49k^2 =7b^2 => b^2=7k^2 tương tự ta => b chia hết cho 7
ta có a và b đều chia het cho 7 trái với giả thiết a, b la hai so nguyen to cung nhau
=> ta có đpcm
Giả sử \(\sqrt{7}\)là số hữu tỉ , như vậy \(\sqrt{7}\)có thể viết dưới dạng phân số tối giản \(\frac{m}{n}\)tức là \(\sqrt{7}=\frac{m}{n}\)
Suy ra : \(7=\frac{m^2}{n^2}\)hay 7n2 = m2 \((1)\)
Đẳng thức 1 chứng tỏ \(m^2⋮7\)mà số 7 là số nguyên tố nên \(m⋮7\)
Đặt m = 7k \((k\inℤ)\),ta có : \(m^2=49k^2(2)\)
Từ 1 và 2 suy ra : \(7n^2=49k^2\Rightarrow n^2=7k^2(3)\)
Từ 3 ta lại có : \(n^2⋮7\)vì 7 là số nguyên tố nên \(n⋮7\)
Như vậy m và n cũng chia hết cho 7 nên phân số \(\frac{m}{n}\)không tối giản,trái với giả thiết . Vậy \(\sqrt{7}\)không phải là số hữu tỉ,do đó \(\sqrt{7}\)là số vô tỉ
căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của (1+ căn 2) vô tỉ........cứ như vậy là ra
và hữu tỷ nên cũng là số hữu tỷ hay hữu tỷ, vô lý
do đó phải vô tỷ hay vô tỷ (đpcm)
ai tích mik đầu tiên mik sẽ tích lại
thề luôn
Không cần làm dài và khó hiểu thế đâu =))Giả sử ( hữu tỷ khác 0)
và hữu tỷ nên cũng là số hữu tỷ hay hữu tỷ, vô lý
do đó phải vô tỷ hay vô tỷ (đpcm)
\(\sqrt{2}+1\)là số vô tỉ \(\Leftrightarrow\sqrt{2}\)là số vô tỉ.
Giả sử \(\sqrt{2}\)là số hữu tỉ.
Khi đó \(\sqrt{2}=\frac{a}{b}\)với \(\left(a,b\right)=1;a,b>0\).\(\Leftrightarrow2=\frac{a^2}{b^2}\Leftrightarrow2b^2=a^2\)
suy ra \(a⋮2\Rightarrow a=2c\)
\(2b^2=4c^2\Leftrightarrow b^2=2c^2\Rightarrow b⋮2\)
(mâu thuẫn với \(\left(a,b\right)=1\))
suy ra điều giả sử là sai.
Do đó ta có đpcm.
tui ra từ 3 đời r