Chứng minh rằng:
Đa thức x10 - y10 chia hết cho đa thức x4 +x3y +x2y2 + xy3 +y4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có VT:
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5\)
VT=VP
Vậy:...
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh
Các câu b d tương tự
Ta có
x 4 – x 3 y + x 2 y 2 – x y 3 = x 4 + x 2 y 2 – ( x 3 y + x y 3 ) = x 2 ( x 2 + y 2 ) – x y ( x 2 + y 2 ) = ( x 2 + y 2 ) ( x 2 – x y ) = ( x 2 + y 2 ) x ( x – y ) N ê n ( x 4 – x 3 y + x 2 y 2 – x y 3 ) : ( x 2 + y 2 ) = ( x 2 + y 2 ) x ( x – y ) : ( x 2 + y 2 ) = x ( x – y )
Đáp án cần chọn là : B
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik
\(=x^3\left(x+2\right)-x\left(x+2\right)\)
\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)
Vì đây là tích của bốn số nguyên liên tiếp
nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)
1, \(xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(x+y\right)\)
2, \(5x\left(3y+4x-6\right)\)
3, \(3x\left(2-y\right)\)
4, \(x\left(x^2+2x+1\right)=x\left(x+1\right)^2\)
5, \(x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)
6, \(2xy\left(x+2y-5x^2y\right)\)
7, \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
11, \(\left(x+y\right)\left(x-1\right)\)
\(1,xy^3-x^3y=xy\left(y^2-x^2\right)=xy\left(y-x\right)\left(y+x\right)\\ 2,15xy+20x^2-30x=5x\left(3y+4x-6\right)\\ 3,6x-3xy=3x\left(2-y\right)\\ 4,x^3+2x^2+x=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ 5,4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\\ 6,2x^2y+4xy^2-10x^3y^2=2xy\left(x+2y-5x^2y\right)\\ 11,x\left(x-1\right)-y\left(1-x\right)=x\left(x-1\right)+y\left(x-1\right)=\left(x-1\right)\left(x+y\right)\)