K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Hướng dẫn giải

Chọn B.

Ta có : cos2 x- cosx = 0 ó cosx. ( cosx – 1) = 0 

30 tháng 9 2019

Vì  π 2 < x < 3 π 2  nên nghiệm của phương trình là x= π

2 tháng 10 2017

Đáp án B.

PT: cos   x   = 1 2  có 2 nghiệm thuộc trên đoạn 0 ; 2 π  do đó để PT đã cho có 4 nghiệm thực thuộc đoạn 0 ; 2 π  thì

TH1: m= cosx có 1 nghiệm thuộc đoạn 0 ; 2 π

 

TH2: m= cosx có 2 nghiệm thuộc đoạn 0 ; 2 π trong đó có 1 nghiệm trùng

 

Vậy m= -1; m=0.

17 tháng 10 2021

ĐK: \(x\ne\dfrac{\pi}{6}+k2\pi;x\ne\dfrac{5\pi}{6}+k2\pi\)

\(\dfrac{cosx-\sqrt{3}sinx}{sinx-\dfrac{1}{2}}=0\)

\(\Leftrightarrow cosx-\sqrt{3}sinx=0\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=0\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Đối chiếu điều kiện ta được \(x=-\dfrac{5\pi}{6}+k2\pi\).

29 tháng 9 2017

Đáp án A

Phương pháp: Giải phương trình lượng giác sau đó kết hợp vào điều kiện của đầu bài để tìm ra nghiệm thỏa mãn.

Cách giải:

cos 2 x − cos x = 0

⇔ cos x cos x − 1 = 0

⇔ cos x = 0 cos x = 1

⇔ x = π 2 + k π x = 2 k π , k ∈ ℤ

+) Với:  x = π 2 + k π : 0 < x < π ⇔ 0 < π 2 + k π < π ⇔ − π 2 < k 2 π < π 2 ⇔ − 1 4 < k < 1 4

Mà  k ∈ ℤ nên  k = 0  khi đó ta có   x = π 2

+) Với:  x = 2 k π : 0 < x < π ⇔ 0 < 2 k π < π ⇔ 0 < k < 1 2

Mà  k ∈ ℤ  nên không có giá trị k nào thỏa mãn.

20 tháng 5 2019

4 tháng 10 2019

Đáp án là C

a: \(\sqrt{3^2+2^2}=\sqrt{13}\)

Chia hai vế cho căn 13, ta được:

\(\dfrac{3}{\sqrt{13}}\cdot\sin2x+\dfrac{2}{\sqrt{13}}\cdot\cos2x=\dfrac{3}{\sqrt{13}}\)

Đặt \(\cos a=\dfrac{3}{\sqrt{13}}\)

Ta được phương trình: \(\sin\left(2x+a\right)=\cos a=\sin\left(\dfrac{\Pi}{2}-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+a=\dfrac{\Pi}{2}-a+k2\Pi\\2x+a=\dfrac{\Pi}{2}+a+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(\dfrac{\Pi}{2}-2a+k2\Pi\right)\\x=\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

b: \(\Leftrightarrow cos^2x-sin^2x+cosx-sinx=0\)

\(\Leftrightarrow\left(cosx-sinx\right)\left(cosx+sinx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\cos x=\cos\left(\dfrac{\Pi}{2}-x\right)\\\sin\left(x-\dfrac{\Pi}{4}\right)=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{2}-x+k2\Pi\\x=-\dfrac{\Pi}{2}+x+k2\Pi\\x-\dfrac{\Pi}{4}=-\dfrac{\Pi}{2}+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{4}+k\Pi\\x=-\dfrac{\Pi}{4}+k2\Pi\end{matrix}\right.\)

11 tháng 10 2023

loading...  loading...