tìm x
(5x^3-4x^2x+1) (3-x+4x^2-5x^3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)
b, \(-2x+2=2\Leftrightarrow x=0\)
c, \(-2x-6=-8\Leftrightarrow x=1\)
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)
=-4/3x^2+8/3-10/3
=-4/3x^2-2/3
d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)
\(=3x^2+9x+22+\dfrac{68}{x-3}\)
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)
Không viết lại đề:
\(P\left(x\right)=x+2\)
TA có: \(P\left(x\right)=-3\)
\(\Rightarrow x+2=-3\)
\(\Rightarrow x=-5\)
Vậy để P(x)=-3 thì x=-5
\(P\left(x\right)=\left(5x^3-4x^2+2x-2\right)+\left(3-x+4x^2-5x^3\right)\)
\(P\left(x\right)=5x^3-4x^2+2x-2+3-x+4x^2-5x^3\)
\(P\left(x\right)=-x+1\)
để P(x)= -3 ta có:
\(-x+1=-3\)
\(\Leftrightarrow-x=-4\)
\(\Leftrightarrow x=4\)
vậy x=4
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Thiếu đề