Y= -X^3 + 3mx^2-3m-1 có 2 điểm cực trị đối xứng nhau qua x+8y-74=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
Để đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó gọi A( 0 ; -3m-1) và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.
Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và A B → = ( 2 m ; 4 m 3 ) = 2 m ( 1 ; 2 m 2 )
Đường thẳng d có một vectơ chỉ phương là u → = ( 8 ; - 1 ) .
Ycbt
Chọn D.
gợi ý :
Tìm giá trị của \(m\) để hàm số có cực đại ,cực tiểu .
TH1 : Đồ thị hàm số y = 3mx2 - (m - 9)x + 8 - m2 có hai điểm phân biệt đối xứng nhau qua gốc tọa độ khi hàm số trên là hàm số lẻ trên tập xác định R
Khi đó f(x) + f(-x) = 0
⇒ 3mx2 + 3mx2 - (m - 9)x + 8- m2 + (m - 9)x - m2 + 8 = 0
⇒ 6mx2 + 16 = 0 (không có m)
Lời giải:
Ta có :
\(y=-x^3+3mx^2-3m-1\)
\(\Rightarrow y'=-3x^2+6mx=0\Leftrightarrow 2mx-x^2=0\)
\(\Leftrightarrow \) \(\left[{}\begin{matrix}x=0\\x=2m\end{matrix}\right.\)
Để ĐTHS có 2 cực trị thì trước tiên \(m\neq 0\)
Khi đó, hai điểm cực trị của ĐTHS là: \(A(0,-3m-1)\) và \(B(2m,4m^3-3m-1)\)
Hai điểm cực trị đối xứng nhau qua \(d: x+8y-74=0\)
\(\Leftrightarrow d(A,d)=d(B,d)\)
\(\Leftrightarrow |0+8(-3m-1)-74|=|2m+8(4m^3-3m-1)-74|\)
\(\Leftrightarrow |-24m-82|=|32m^3-22m-82|\)
Từ đây ta chia ra 2TH:
TH1: \(-24m-82=32m^3-22m-82\)
TH2: \(24m+82=32m^3-22m-82\)
Từ 2 TH ta thu được \(m=2\) thỏa mãn